
Stamp Applications no. 21 (November ’96):

Look Into ‘The Eye from TI’
For Precision Light Readings

TSL230 light-to-frequency chip
plus beginner’s race-timer project
by Scott Edwards

PHOTODIODES are excellent light sensors—
better in most applications than cadmium-
sulfide photocells, phototransistors, photovoltaic
cells, etc. What those other devices have going
for them is that their outputs are easier to
interface than the tiny variations in current
through a photodiode. Nobody wants to fool
around with the analog electronics required to
use photodiodes.

Texas Instruments (TI) looked at this
situation and, instead of saying, “ain’t it a
shame” said, “let’s make a product!” The
product—actually one of a family of products—is
the TSL230 programmable light-to-frequency
converter. The TSL230 measures light to the
nearest gnat’s whisker using an array of
photodiodes, and outputs Stamp-friendly digital

square waves. We’ll look at two strategies for
using it with the Stamps, one for the BS1 and
another for the BS2.

In BASIC for Beginners, we’ll lay the
foundations of a fairly typical Stamp project: a
three-lane race timer.

The Eye from TI. Figure 1 is a block diagram
of the TSL230 programmable light-to-frequency
converter. The IC package (an 8-pin DIP) is
transparent so that light shining on it reaches
an array of photodiodes. An electronic
sensitivity control connects part or all of this
array to a current-to-frequency converter that
I’ve labeled “analog magic.” The frequency
ranges from near 0 Hz in darkness to around
1.4 MHz in bright light.

photodiode
array

sensitivity
control

analog
magic

programmable
divider

s0

s1

s2

s3

digital
pulses

s0s1

00
10
01
11

power down
x1
x10
x100

sensitivity s2s3

00
10
01
11

1
2
10
100

divide by

OE
0=on
1=off

Figure 1. Simplified block diagram of the TSL230 light sensor.

Stamp Applications no. 21, November 1996

2

The output is fed into a programmable divider
that can pass the signal as-is, or divide it by 2,
10, or 100.

The TSL230 has a couple of especially
microcontroller-friendly features: Its OE (output
enable) pin lets you disconnect the output so
that it can share a data bus with other devices.
And the sensitivity control may be used to power
down the chip to reduce its current draw from
2mA active to 10µA idle.

Since the TSL230’s output is basically a train
of pulses, it’s easy to measure with the Stamps
using the Pulsin instruction available on the
BS1 and BS2, or the new Count instruction on
the BS2 only. Figure 2 shows the hookup used
in the example programs of listings 1 and 2.

+5V

0.1µF

+5V

+5V

s0

s1

OE

GND

s3

s2

OUT

Vdd

TSL230

1
pin 0

pin 1

pin 2

pin 7

LCD Serial Backpack-equipped
2x16 Display

Figure 2. Hookup for listings 1 and 2.

Using Pulsin, the Stamp measures the width
of a single pulse. This provides a quick snapshot
of the frequency. In order to get decent
resolution out of a single pulse measurement,
we want the pulse to be as long as possible
without exceeding the max pulse width (655 ms
for BS1 or 130 ms for BS2). To maximize pulse
width, I set the output divider to 100, meaning
that each output pulse represents 100 cycles
from the light-to-frequency converter.

With the Count instruction, you can get high
resolution by either ensuring that the frequency
is close to the maximum that Count will handle
(125 kHz), or by setting the instruction to count
for a long period of time (up to 65 seconds).

Since bright light drives the light-to-frequency
converter as high as 1.4 MHz, we have to set the
programmable divider to ensure that the output
to the BS2 never exceeds 125 kHz. The only
setting that will do the trick is divide-by-100.

With that setting, the max output to the BS2
is 14 kHz. Count has a 16-bit range (65535
max), so it could be set to count as long as 4.6
seconds without overflowing. In the example
program, I used a 1-second count.

Both of the example programs display the
effects of cycling the sensitivity settings through
x1, x10, and x100. The sensitivity control is
possibly the neatest feature of the chip. TI refers
to it as an “electronic iris,” since it works by
controlling the surface area of the photodiode
array used to drive the light-to-frequency
converter. Want more sensitivity? Switch in all
the photodiodes. Less? Switch in fewer
photodiodes.

Controlling sensitivity can be important to a
light-sensing application. For example, I found
that in bright sunlight the x10 and x100 setting
returned the same value. The light-to-frequency
converter was saturated—driven as high as it
would go regardless of further input. Only the
x1 setting returned usable results in bright
sunlight.

In normal room light, I saw the advantage of
the higher sensitivity settings. I tried covering
the TSL230 with a piece of transparent plastic
cut from a plastic bag. At the x100 setting, the
plastic made a large difference in the light
measurement. At x1, it didn’t make a difference
at all.

Applications for the TSL230? TI uses a smart
washing machine as an example. The TSL230
monitors the amount of light passing through
the rinse water to determine when to end the
cycle. A similar arrangement might keep tabs on
the quality of water in an aquarium or beer in a
vat. Photographic applications, like light
metering, exposure control, color matching,
densitometry, etc. seem obvious. Or how about
an improved version of those heart-rate
monitors that pass light through the skin? The
frequency-modulated output of the TSL230
ought to be less vulnerable to noise than
amplitude-modulated sensors.

Stamp Applications no. 21, November 1996

3

BASIC for Beginners. Programming is about
problem-solving, so this month we’ll conduct a
brainstorming session aimed at finding a
suitable solution to a typical Stamp
programming problem.

The problem is this: We want to use a BS1 as
a three-lane race timer for a Pinewood Derby
race. This kind of race involves small (6" or so)
gravity-powered cars made from blocks of wood.
The cars start simultaneously, and the winner is
the car that reaches the end of the straight,
downward-sloping track in the shortest time.

From an electronic standpoint, let’s assume
that we have four switches arranged as shown
in figure 3. The start switch pulses low when the
cars leave the starting gate, and the three finish
switches pulse low as their respective cars cross
the finish line. The switches could be simple
mechanical devices, or fancier light-beam
electronic switches.

+5V
10k (all)

Race Start

Finish 3

Finish 2

Finish 1

pin 7

pin 2

pin 1

pin 0

BS1

Figure 3. Arrangement of race-timer switches.

The most important function of our program
will be to keep an accurate record of the time
from start to finish for each of the cars. A
secondary goal will be to have as much timing
precision as possible, since a race may be won by
just milliseconds.

The first duty of our program will be to watch
the start switch until it goes low, signaling the
start of the race. We have two choices: to read
the start pin directly, or to use the Button
instruction, which offers such amenities as
switch debouncing and autorepeat.

How to choose? Let’s try to state the function
of the start switch as specifically as possible.
The contacts of the start switch will close at the
instant the cars are released to start the race.
The switch will bounce (flutter on/off for a few
milliseconds) after initially closing, then stay
closed for some indefinite amount of time. Once
the cars are on their way, the switch may reopen
after a while.

Hmm, switch bounce. Maybe we ought to go
for the debouncing feature of Button. Or should
we? After all, it’s the initial switch closure that
signals the start of the race, not what happens
after that. Once the race starts, we can
completely ignore the start switch. To put it into
computerese, it’s the high-to-low transition that
matters. So Button is unnecessary; we can just
watch the pin. A bit of initial coding and we
have a test program:

SYMBOL starter = pin7
hold:
if starter =1 then hold
debug "Start!", cr
end

As long as the start switch is open, the Stamp
sees a 1 on pin7 (which we have renamed
“starter”). So the program keeps executing the
line after hold: over and over. When the switch
closes, starter is equal to 0, so the if...then
condition is no longer true. The program drops
down to the next line and prints the "Start!"
message on the debug screen.

Now comes the harder part—keeping track of
time for each of the racers until they cross the
finish line. The Stamp doesn’t have a timer
function, so ‘keeping time’ really means adding 1
to a counter in a loop that ends when the race is
over. For instance, if we had only one car to
keep track of, we could use a variation of the
hold loop above:

SYMBOL finish = pin0
SYMBOL time = w2
'... (hold loop here) ...
timing:
 if finish = 0 then raceOver
 time = time + 1

Stamp Applications no. 21, November 1996

4

goto timing
raceOver:
debug "Finish time =", #time, cr
end

While this approach would be fine for one lane,
it wouldn’t work at all for three lanes. The race
ends only when all three cars have finished, and
a finish switch only pulses briefly when its car
crosses the finish line. Thinking about adding a
second lane to that program, you might be
tempted to write:

 if finish1 = 0 then raceOver
 if finish2 = 0 then raceOver

Then all timing would stop when either car
crossed the finish line. We want race times for
all cars, and for the race to finish only when all
cars are done. Another thought might be:

 if finish1 = 0 and finish2 = 0 ...
 ... then raceOver

No good. This code would only work if car 1 and
car 2 finished simultaneously.

The point is that there’s really no way to patch
up the one-lane approach to work for three
lanes. Something critical is missing, and we
have to figure out what it is before we can make
a working program.

Why did I show you this blind alley? I wanted
to talk about courage. That’s right, courage; it
takes guts to throw away an idea that initially
seems promising.

The cowardly thing to do would be to attempt
to save that first-draft code by adding more and
more instructions to counter each of its
deficiencies.

We’re brave and bold enough to say “phooey”
to a bad idea. Let’s start over with another run
at the problem in light of that false start.

The primary problem with the one-lane code is
that it can’t deal with the fact that the finish
switches only pulse when the cars cross the
finish line. If these switches came on and stayed

on, that code would be a lot more viable.
Ah, the snake rears its ugly head. Faced with

difficulty, you begin to think about messing with
the hardware to salvage bad software. Resist
temptation; hardware mods are a last resort.
Keep thinking.

OK, suppose we store the status of each car as
something like “racing” and “finished.” Then we
have a clear-cut condition for keeping time, as in
‘if racing1 = 1 then time1 = time1+1.’ (Assuming
that ‘racing1’ is the status of car1, where 1=in-
the-race and 0=finished.) We also have a clear
condition for stopping a car’s timer; ‘if finish1 =
0 then racing1 = 0.’ And—hallelujah—we have a
condition for ending the whole race; ‘if racing1 =
0 and racing2 = 0 and racing3 = 0 then
all_finished.’

It appears that our racing timer is now on the
right track.

Next month, we’ll prototype the racing timer
application and look at ways to streamline the
code. We’ll see how bit variables can be used as
flags, and how to convert If...Then instructions
into compact Boolean logic. I think you will be
surprised and pleased to see how simple the
final code is.

Sources. For more information on the BASIC
Stamp, contact Parallax Inc., 3805 Atherton
Road no. 102, Rocklin, CA 95765; phone 916-
624-8333; Internet http://www.parallaxinc.com.

The TSL230 is available from Newark
Electronics, phone 312-907-5436.

Scott Edwards Electronics, PO Box 160, Sierra
Vista, AZ 85636-0160; phone 520-459-4802; fax
520-459-0623; Internet archive (catalog, user
manuals, samples) located at ftp.nutsvolts.com
in directory /pub/nutsvolts/scott; e-mail
72037.2612@ compuserve.com.

Scott carries the LCD Serial Backpack
described in this article for $29, and the 2x16
serial LCD module for $45 without backlight,
$55 with LED backlighting.

Visa, Mastercard, American Express, and
Discover accepted. Personal checks and money
orders also welcome.

New contact information:

Scott Edwards Electronics, Inc.
2700 E. Fry Blvd. Suite A4
Sierra Vista, AZ 85635
ph: 520-459-4802; fax 520-459-0623

web: www.seetron.com
e-mail: scott@seetron.com

Stamp Applications no. 21, November 1996

5

Listing 1. BS1 Program to Demonstrate TSL230
' Program: TSL230.BAS (Interface with TSL230 light sensor)
' This program demonstrates the light-to-frequency conversion
' capability of the TSL230 sensor from Texas Instruments.
' BS1 pins 0 and 1 control the sensitivity of the '230 through
' its "electronic aperture" feature. The higher the sensitivity,
' the higher the frequency output for a given light intensity,
' as shown below:
' bit1 bit0 Sensitivity
' ---- ---- -----------
' 0 0 sensor OFF
' 0 1 x1
' 1 0 x10
' 1 1 x100
' Since the BS1 measures pulse width rather than frequency, its
' response is reciprocal; larger numbers mean less light. The program
' reverses this by dividing the light-dependent value into 65535.
' The program displays its readings on a 2x16 serial LCD module.

SYMBOL sens = b2 ' Sensitivity setting.
SYMBOL mult = b1 ' Multiplier for a given sensitivity.
SYMBOL light = w2 ' Light-intensity reading.
SYMBOL I = 254 ' Instruction prefix for LCD.
SYMBOL one = 128 ' Address of 1st LCD line.
SYMBOL two = 192 ' Address of 2nd LCD line.
dirs = %00000011 ' Make pins 0 and 1 outputs.
again: ' Main program loop.
for sens = 1 to 3 ' Walk through sensitivity settings.
 pins = sens ' Write sensitivity setting to pins.
 lookup sens,(0,1,10,100),mult ' Get the sensitivity multiplier.
 pulsin 2,1,light ' Take a light reading.
 light = 65535/light ' Compute reciprocal.
 serout 7,n2400,(I,one,"multiplier: x",#mult," ") ' Display.
 serout 7,n2400,(I,two,"light: ",#light," ")
 pause 1000 ' Wait a second between readings.
next ' Next sensitivity.
goto again ' Repeat forever.

Stamp Applications no. 21, November 1996

6

Listing 2. BS2 Program to Demonstrate TSL230
' Program: TSL230.BS2 (Interface with TSL230 light sensor)
' This program demonstrates the light-to-frequency conversion
' capability of the TSL230 sensor from Texas Instruments.
' BS1 pins 0 and 1 control the sensitivity of the '230 through
' its "electronic aperture" feature. The higher the sensitivity,
' the higher the frequency output for a given light intensity,
' as shown below:
' bit1 bit0 Sensitivity
' ---- ---- -----------
' 0 0 sensor OFF
' 0 1 x1
' 1 0 x10
' 1 1 x100
' This BS2 program uses the COUNT instruction to count the number
' of TSL230 output cycles over a period of 1 second. This approach
' trades a relatively long measurement period for excellent
' resolution and accuracy. For a quick-and-dirty measurement,
' the PULSIN approach used with the BS1 could be employed instead.
' The program displays its readings on a 2x16 serial LCD module.

sens var byte ' Sensitivity setting.
mult var byte ' Multiplier for a given sensitivity.
light var word ' Light-intensity reading.
I con 254 ' Instruction prefix for LCD.
one con 128 ' Address of 1st LCD line.
two con 192 ' Address of 2nd LCD line.
n2400 con $418d ' Serial constant for 2400 bps

dirs = %00000011 ' Make pins 0 and 1 outputs.
again: ' Main program loop.
for sens = 1 to 3 ' Walk through sensitivity settings.
 OUTS = sens ' Write sensitivity setting to pins.
 lookup sens,[0,1,10,100],mult ' Get the sensitivity multiplier.
 count 2,1000,light ' Count pulses for 1 second.
 serout 7,n2400,[I,one,"multiplier: x",DEC mult," "] ' Display.
 serout 7,n2400,[I,two,"light: ",DEC light," "]
next ' Next sensitivity.
goto again ' Repeat forever.

