Chapter 3

Image Evaluation

3.1 Point Spread Function

The diffraction integral, in the Fresnel limit, has the form

/ / uy (e, B) exp { = 12((9{; —a)? +(y— 5)2)} dadf. (3.1)

based on the geometry shown in Fig. 3.1.
The quadratic phase term can be expanded to give
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Usually u;(c, 8) will be a converging spherical wave and therefore include a phase term
canceling the quadratic phase factor in the integral.
In polar coordinates

Uy(r) =2m /OOO uy(p) exp [j%w;?] Jo(2mpr)pdp (3.4)

The diffraction integral in polar coordinates can be written using normalized (unit radius)
pupil coordinates and normalized image coordinates (units of €). The results are

wr(r) = 5 [ exp(enW (o)) Jo(2mrp)pdp (3.5)

where W (p) is the wavefront. Then

b(r) = |=us(r)P (3.6

is the normalized diffraction irradiance. The normalization gives I5(0) = 1 for W (r) = 0.
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Figure 3.1: Geometry of diffraction (from Gaskill).

Example 1 The rectangular aperture of width a and height b

uy (e, B) = Aexp {—j%m(oﬂ + ﬁ2)} rect (2, %) (3.7)
has diffracted intensity
b\’ ar by

I — AP (22 sine? (22, 2L 3.8
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Example 2 The circular aperture of diameter d

. p

uy(p) eXp{ I Mg (3.9)

has a diffracted intensity profile of

L(r) = |A|2< rd” >zsomb2 <ﬂ> (3.10)

Fig. 3.2 shows a perspective plot of the diffraction pattern for a circular aperture.

Example 3 The effects of aberration on the diffraction pattern of a point object illumi-
nating a circular aperture can be demonstrated by considering a simple defocus wavefront.
The aberration function W(p) for defocus is given by

W(p) = a.p’

Then Eq. 3.5 and Eq. 3.6 are evaluated numerically and the relative irradiance is plotted
as a function of image radius (in units of ¢,). Different cases are obtained by changing the

67



Figure 3.2: Diffraction of circular aperture.

value of a,. Fig 3.3(a) shows the results for small focus shifts. The zero focus case is just
the Airy diffraction pattern. It provides a check on the scaling parameters since the peak
irradiance should be unity and the first zero in irradiance should appear at r = 0.61e¢,,.

The quarterwave defocus example corresponds to the Raleigh criterion for a diffraction-
limited image. It also matches the Maréchal criterion of a Strehl ratio of at least 0.8.
For small focal shifts, and small aberration values in general, the effect on the image is a
decrease in the magnitude of the central diffraction peak and an increase of the magnitude of
the secondary ring structures. One could conclude that any point spread function in which
the central peak is a dominant structure is diffraction-limited.

As the coeffcient for focal shift increases, the central peak becomes less prominent, and
eventually is superceded by the ring structure. This is shown in Fig. 3.3(b). Note that the
vertical scale is expanded by a factor of ten to show the detail better. For focal shifts given
by integer values of a,, there is a zero in irradiance on axis. This phenomenon was important
historically in demonstrating the wave nature of light.

Example 4 Studying the effects of general aberrations on the diffraction point function
requires the repeated evaluation of the Fourier transform integral in Eq. 3.3. The Fast Fourier
Transform (FFT) algorithm can be used for this purpose. As an example, we sampled the
amplitude function for a circular pupil with five waves of defocus, using a 32 x 32 sample grid.
This grid was inserted into a complex array with 256 x 256 elements which had previously
been filled with zero values. The FFT of this complex array was taken. Then each element
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Figure 3.3: Radial profiles of the diffraction of circular aperture with varying focus shift
(given in waves).
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Figure 3.4: Diffraction of circular aperture with 5 waves of defocus.

was multiplied by its complex conjugate. The result is a sampled representation of the
diffraction point spread function.

Fig. 3.4 shows a perspective plot of the resulting diffraction pattern. The peak irradiance
(0.002) has been normalized to unity. Fig. 3.5(a) shows a radial profile calculated using nu-
merical integration of Eq. 3.5. Fig. 3.5(b) shows a cross-section of the image array calculated
using the FFT. Note that the gross features in the image-plane array match those obtained
using direct integration, but that the smaller features are only approximate matches. Note
further the variation in irradiance along the top of the outer ring in Fig. 3.4. These are
sampling artifacts due to the discrete nature of the pupil grid.

3.2 Energy Distribution Functions

Energy distribution functions determine the total energy from a point source, passing through
the optical system, and collected according to specific geometrical constraints. A simple en-
ergy distribution measurement, for example, might determine the fraction of total available
energy falling on a rectangular detector element in the image plane. Optical system spec-
ifications may also be estabished related to energy distribution. For example, an optical
system could be required deliver 80% of the available energy into a circular area whose ra-
dius is twice the Airy radius. Such a system, of course, would be nearly diffraction limited
in performance.

The energy distribution functions most commonly used are the radial energy distribution
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Figure 3.5: Radial profiles of the diffraction of circular aperture with focus shift of five waves.
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Figure 3.6: Construction of the radial energy distribution function.

function (RED) and the knife edge distribution function (KED). The RED function, shown in
Fig. 3.6, measures the fraction of total energy in the point spread function that lies within the
radius r. The RED function is sometimes called the encircled energy distribution function.
The KED function, shown in Fig. 3.7, measures the fraction of total energy that passes
by a knife edge oriented in a given direction as a function of its transverse position. Both
functions are projections, reducing the full two-dimensional point spread function to a one-
dimensional energy distribution function. The RED averages over the angular coordinate,
whereas the KED averages linearly in a direction parallel to the knife edge.
The radial energy distribution function is calculated as

E(r) = (/B [ [ o 0)pdpds (3.11)

where E,, is the total energy and h(p, 6) is the point spread function in image plane coordi-
nates (p, 0). It is most relevant in systems for which the point spread function is circularly
symmetric. Otherwise there can be considerable uncertainty on the appropriate location for
the center of the coordinate system.

Fig. 3.6 shows a spot diagram for 1 wave of fourth-order spherical aberration and -0.5
wave focal shift. Each spot represents the same fraction of the total energy passing through
the exit pupil. The table shows the number of spots inside a circle of the specified radius.
The corresponding RED plot is shown below the data table.

The knife edge distribution is produced by first rotating the image plane coordinate
system from (x, y) to (s, t) so that the s direction is transverse or perpendicular to the knife
edge, and t is parallel to the knife edge. Then the distribution function itself is calculated
from

Ei(s) = (1/E,) _Z / " h(s, t)dsdt (3.12)
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Figure 3.7: Construction of the knife edge energy distribution function.

where h(s,t) is the point spread function in rotated image plane coordinates.

Fig. 3.7 shows a spot diagram with a knife edge traveling along the x-axis, as shown by
the arrow. The table shows the number of spots to the right of the knife edge as a function
of its position. The corresponding KED plot is shown below the data table.

Energy distribution diagrams for diffraction spread functions are obtained much like those
derived from geometrical spot diagrams. Instead of counting spots within a given radius,
for example, we numerically integrate the irradiance within the given radius. If the point
spread function is not diffraction-limited, there is a good correspondence between an energy
distribution diagram obtained from the geometrical spot diagram and one obtained from
the diffraction spread function. This is illustrated in Fig. 3.8, which shows RED and KED
functions for a circular pupil with 5 waves of focal shift. The solid curve was derived from the
point spread function shown in Fig. 3.2. The dashed curve was derived from the geometrical
spot diagram.

Example 1 The radial energy distribution of the Airy pattern of a circular aperture is
given by
E.(r) =1 — jo(2mr)? — j1(27r)? (3.13)

where the radius is in units of €,. This function is shown in Fig 3.9. A diffraction-limited
spot has a signficant fraction of energy (16.2%) located outside of the central peak. For the
dark rings, shown by the dashed lines in Fig. 3.9, j;(277) = 0. The total energy outside of
a dark ring is given by jo(27r)2.
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Figure 3.8: Energy distribution plots for a circular pupil with 5 waves of focal shift. The
solid curves were obtained from the diffraction point function, and the dashed curves from

the geometrical spot diagram.
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Figure 3.9: Radial energy distribution for perfect optical system. The radius is in units of
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Figure 3.10: Area of segment of circle.

Example 2 The knife-edge energy distribution of a cylindrical point spread function of
unit radius is given by

Ey(z) = [cos ! (z) — 2(1.0 — 2)'/*| /= (3.14)
where x is the transverse position of the knife edge relative to the center of the cylinder.
Eq. 3.14 is derived from the formula for the area of a segment of a circle, as shown in Fig. 3.10.
A plot of the KED function for a cylinder is shown in Fig. 3.11.

3.3 Edge and Line Response Functions

A sharp edge placed in the object plane of a diffraction-limited optical system will produce
an edge image blurred by diffraction. The width of the edge will be approximately an Airy
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Figure 3.11: Knife-edge energy distribution for cylindrical point spread function.

diameter. The image irradiance profile associated with the image of the edge is called the
edge response function.
To say that an ideal optical system is a linear, shift-invariant system means that

1. Any point in the object field maps into a corresponding image point without distortion.

2. An object point produces the same energy distribution (point spread function) inde-
pendent of its location in the object field.

3. The irradiance at any point in the image is the linear superposition of irradiances from
the spread functions of every point of an extended source.

In such a system, the image is obtained as
E(,y) = [ [ Eia, B)hle - ayy — Bdads (3.15)

where h(z,y) is the point spread function and E;(z,y) is the ideal image irradiance obtained
by mapping object space into image space. Generally this mapping implies a change in scale
or magnification. The range of integration extends over the dummy image space coordinates
(ar, ). Eq. 3.15 says that the actual image is the convolution of the ideal image with the
system point spread function,

E(.’E, y) = EZ(JJ,Z/> * h(.’lﬁ, y)‘ (316)

Similarly, a thin slit or line placed in the object plane of a diffraction-limited optical
system will produce a line image blurred by diffraction. The line width will be approximately
an Airy diameter. The image irradiance profile associated with the image of the line is called
the line response function.
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The edge response function and line response function are closely related. An ideal edge
is given by the step function, step(z), which describes a vertical edge located at the origin.
An ideal line is the derivative of the step function,

line(z) = %step(x) = () (3.17)

where §(x) is the two-dimensional line delta-function. The line response function is the
integral of the point spread function,

l(z) = /h(:ﬂ, y)dy, (3.18)

along a direction parallel to the line itself.

The edge and lines response functions for an ideal, diffraction-limited system are shown
in Fig. 3.12. Both functions were evaluated numerically using the Airy function as the point
spread function. The line spread function is normalized to a central value of unity.

There is a close association between the edge response function and the knife-edge energy
distribution (KED) function. The edge response function is determined by placing an edge
in the object plane and scanning a point detector perpendicular to the edge. It could also
be determined by keeping the detector fixed, and scanning the edge in the object plane. The
KED function is determined by using a point object and scanning an edge in the image plane.
For a strictly linear shift-invariant system, all three measurements should produce the same
response curve. In a real optical system, each measurement would yield a different result,
because the point spread functions involved in each measurement are generally different.
Thus the image of a vertical edge, centered horizontally in the object field, will have a
different profile near the top of the field than at the middle of the field. In many optical
systems, however, there will be regions of the object field over which the point spread function
is essentially the same. Such a region is called an isoplanatic patch.

3.4 Isoplantism and the Sine Condition

An optical system is said to be isoplanatic if a displacement of the object point produces no
change in the aberrations of the corresponding shifted image point. This concept normally
applies to a limited region of the field, perhaps even a differential area. An aplanatic optical
system is also free from the primary optical aberrations. The term aplanatism was used by
writers in the 1800’s to refer to the abscence of spherical aberration. In present day usage,
it usually means freedom from spherical aberration, linear coma, and primary astigmatism.

The axial symmetry in an optical system makes it possible to determine the departure
from isoplanatism near the axis by very simple calculations involving only axial rays. Con-
sider two axial points P and P’ which are conjugates and two associated meridional rays
with angles U and U’. Let P be displaced a small distance y, in the sagital direction. The
optical sine theorem then states

nyssinU = n'y. sin U’ (3.19)
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Figure 3.12: Edge and line response of diffraction-limited optical system.
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This is the skew equivalent of the Lagrange invariant. It gives a magnification for small
distances imaged by rays at large angles, whereas the Lagrange invariant is for large distances
with rays at small angles in the meridional plane.

We have already seen that coma is the result of a change in magnification as a function
of aperture. Spherical aberration is the result of a focal shift as a function of aperture. If
the spherical aberration at the edge of the aperture is zero, then the coma will also be zero
if

. .
sin U _ sin U . (3.20)

U u!

This equation is the simplest form of the Sine Condition. Early lens designers made extensive
use of a dimensionless ratio called the offense against the sine condition (OSC), calculated

from WU o R
sinU
05C = u sinU’ <R - (%) —1 (3:21)

where R is the radius of the reference sphere and 0/ is the longitudinal spherical aberration
at the finite aperture angle U. Isoplanatism is destroyed by significant OSC residuals.

A more complete discussion of the sine condition, isoplanatism and related topics, espe-
cially in non-symmetric systems, may be found in Chapter 8 of Welford [2].

3.5 Resolving Power

The resolving power of an optical system indicates how close two objects can be and still
be recognized as separate objects. The resolving power of a grating, for example, is the
minimum separation necessary to distinguish two narrowly space spectral lines. Similarly,
the resolving power of a telescope is the minimum angular separation needed to distinguish
two stars. Fig. 3.13 shows a cluster of point objects, including some which are just resolved
and some which are not. Generally the concept of resolving power is applied to situations
where the objects are self-luminous and mutually incoherent, that is, such that there are
no interference effects (fringes) between the objects. Then the irradiance distribution in the
combined image is the sum of the irradiance patterns of the individual objects.

Under ideal conditions, where the diffraction patterns are symmetric and noise-free, even
a small separation of two points may be distinguished by the slight asymmetry imparted to
the combined pattern. In practice, however, several criteria are commonly used to define
resolving power. In Fig. 3.14, we see three possible situations, corresponding to separations
of 0.4¢,, 0.5¢,, and 0.6¢,. The first case is not resolved because there is no evidence of two
peaks. The second case is barely resolved, and the third case is adequately resolved.

One criterion, attributed to Lord Rayleigh, is that the central diffraction maximum of
one image should be no closer than the first diffraction pattern zero of the second image.
Rayleigh’s criterion applied to point images demands that the images be separated by 0.61¢,.
Rayleigh’s criterion applied to two uniformly illuminated disks, as shown in Fig. 3.15, means
that the disks must be separated by one radius (0.5¢, if the disk diameter is €,).
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Figure 3.13: Image showing a cluster of point objects, some of which are just resolved.

Another criterion, less conservative than Rayleigh’s criterion, is Sparrow’s criterion which
states that two image points can just be resolved if the irradiance is a constant along a line
separating the image centers. Mathematically, Sparrow’s criterion means that the second
derivative of the irradiance be zero at the midpoint. For a circular aperture, Sparrow’s
criterion becomes a separation of 0.475¢,. The case of 0.5¢, shown in Fig. 3.14 is just larger
than Sparrow’s criterion.

Fig 3.16 shows the same three conditons plotted as cross-sections in Fig 3.14.

3.6 Resolution Bar Targets

An optical systems is typically judged by its resolving power, or ability to reproduce fine
detail in an image. The size of the finest detail which can be resolved is specified by the
limiting resolution.

Three-bar resolution charts represent the most common form of target used for testing
limiting resolution. The basic pattern, shown in Fig. 3.17, consists of three bars. The bars
are each 1 unit wide and 5 units long and are placed 1 unit apart, so that the pattern is 5 x
5 units square. Each spatial frequency is represented by a set of three horizontal and three
vertical bars. The sets are usually arranged in groups of six (shown as columns in Fig. 3.17).
Each group is one-half the size of the previous group. Adjacent members in the same group
are reduced in size by a factor of the sixth root of two (0.8909). The largest member of a
group is then related by this same factor to the bottom member of the previous group.

The basic unit of size is the cycle or line-pair, shown in Fig. 3.18. Spatial frequency is the
number of cycles per mm. and angular frequency the number of cycles per milliradian. In
television or array-based systems, the resolution limit is determined by the number of lines
or pixels per line. There are two television lines per optical cycle or line-pair. An image
array with pixels separated by 0.01 mm can resolve 50 cycles/mm.
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Figure 3.14: Cross-section plots of irradiance for ideal circular point images separated by
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Separation is D/2

Figure 3.15: Resolution of two uniformly illuminated disks.
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Figure 3.16: Computer-generated images for two ideal circular point images separated by
small distances.

As the size of a structured object decreases, its spatial frequency content increases. The
spatial frequency of each group in Fig. 3.17 is a factor of two larger than the group to the
left.

The effect on the optical system on the image of the resolution chart is to blur the edges
of the bars. Fig. 3.18 shows a cylindrical point spread function being scanned across a three
bar target. The diameter of the cylinder function is 1.5 units. The maximum and minimum
brightness levels in the image are reduced from those in the object because the point spread
function is larger than a single bar. This reduces the contrast of the image. As the size and
separation of the bars decreases, the blurred edges begin to blend together, and this blending
continues until individual bars are no longer distiguishable.

Limiting resolution of an optical system is tested by visual examination of resolution-chart
images. The tests should be done at sufficient magnification and illumination to minimize
limitations imposed by the eye of the observer. The limiting resolution is the smallest
set of bars for which individual bars may be recognized. This is, of course, a subjective
measurement and should be determined statistically using a number of different observers.

An objective measure of resolution quality is the contrast or modulation M, defined by

_ Vmax — Viyin

M (3.22)

B Vmax + len

where Vimax and Vj,;;, are the image brightness levels shown in Fig. 3.18. A plot of modu-
lation as a function of spatial frequency is the contrast function (CF). A hypothetical CF is
shown as the solid curve in Fig. 3.19. We distinguish here between modulation determined
for a three-bar target and that determined for a sinuosoidal target. The response to sinu-
soidal targets of varying spatial frequency is the modulation transfer function (MTF). The
curve indicating the smallest modulation detectable by a sensor or observer is the threshold
modulation function TM. A typical threshold curve is shown as the dashed line in Fig. 3.19.
Note that The threshold curve usually rises with spatial frequency. The intersection of the
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Figure 3.17: Simple three-bar resolution chart.

threshold curve with the contrast function yields the limiting frequency of the optical sys-
tem. TM curves are derived empirically from repeated experiments with different observers,
batches of photographic emulsions, or sensor samples. The final TM curve represents an
average of many measurements and should really include uncertainty bands to indicate the
expected spread or uncertainty in the values.

The biggest advantage of using the threshold modulation curve to determine limiting
modulation is that it separates measurements involving observers or the sensing system
from those involving the image-forming system. There are many technical limitations to
the approach [3], but in general the use of a threshold curve is helpful in understanding the
nature of the imaging process.

3.7 Modulation Transfer Function

The idea of measuring the contrast of periodic images can be generalized by analogy to the
Fourier methods used for signal analysis in Electrical Engineering. Instead of a three-bar
target, we use a sine-wave target of variable spatial frequency, as shown in Fig. 3.20. The
ideal target should be of infinite extent and produce a varying irradiance pattern given by
cos(2m f,x). The modulation transfer function (MTF) is the ratio of the contrast of the actual
image relative to that of an ideal image (object pattern scaled by the magnification) as a
function of the spatial frequency f,.

If the optical system is a true linear, shift-invariant (LSI) system, then its response to a
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Figure 3.19: Modulation transfer function (solid curve) and the threshold modulation curve
(dashed line) intersecting at the limiting resolution of the optical system.
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Figure 3.20: Contrast of a sinusoidal pattern.

sine-wave input pattern will be a sine-wave output pattern of the same frequency but different
amplitude (and possibly phase). This is a consequence of sine waves being eigenfunctions of
LSI systems. Bar targets are popular test charts because it is much easier to make a chart
with a binary irradiance profile (white-black) than it is to make a continuous gray-level
chart with the proper transmittance or reflectance properties. The mathematical form of
the response to a bar target, however, depends on the spatial frequency of the target and on
the mathematical form of the point spread function. A sine-wave target, on the other hand,
will produce a sine-wave response no matter what the form of the point spread function.

3.8 Optical Transfer Function

The image of an LSI optical system is the convolution of the point spread function with the
ideal image,

where h(z,y) is the point spread function and f;(z,y) the ideal image irradiance function.
The Fourier transform operation allows us to equate the spatial-frequency spectrum of the
image to the product of the spectrum of the object and the Optical Transfer Function (OTF),

F(fe, fy) = H(fz, fy)Filfe, fy) (3.24)

where H(f,, fy) is the OTF and F;(f,, f,) the spectrum of the ideal image.

The modulation transfer function, discussed in the previous section, is the modulus of a
cross-section of the optical transfer function.

There are essentially three different functions involved in calculating the OTF. These are
the pupil function, point spread function, and optical transfer function. The relationships
among these functions are diagrammed in Fig. 3.21
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Figure 3.21: Optical Functions

The pupil function describes the magnitude and phase of the light in the pupil plane. The
modulus squared of the pupil function, or pupil radiance function (PRF), gives the radiance
distribution of the light over the pupil. The phase of the pupil function is proportional to
the wavefront OPD.

The amplitude spread function (ASF) is the Fourier transform of the pupil function. It
describes the magnitude and phase of the light at the focal plane. The point spread function
(PSF) is the square modulus of the amplitude spread function and describes the distribution
of energy at the focal plane. The point spread function is generally considered to be the
impulse response of an optical system, the actual image produced by a point object. The
PSF of a uniform circular pupil with no aberrations is an Airy function. The PSF can be used
to obtain the value for the Strehl ratio. It can also be used to produce a diffraction-based
energy distributions in a similar way that a spot diagram is used to generate a geometrical
energy distributions.

The optical transfer function (OTF) is the autocorrelation of the pupil function. It is
also the inverse Fourier transform of the point spread function. The OTF delineates the
response of the optical system to spatial frequencies present in the object. Multiplication of
the OTF by the Fourier transform of the object gives the Fourier transform of the image.

The OTF of an ideal optical system having a circular aperture with uniform transmittance
can be derived from the autocorrelation of the pupil function, as shown in Fig. 3.22. If the
pupil radius is a, then the radius of the autocorrelation function is 2a, and the maximium
spatial frequency imaged by the optical system (in air) is

2a 2

frn = R o (3.25)

The modulation is proportional to the shaded area of overlap in the shifted pupils, at a
spatial frequency proportional to the distance s between the centers. The overlap area is
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Figure 3.22: Autocorrelation of ideal circular pupil is given by shaded area as function of s.

twice that of the segment shown in Fig. 3.10. The OTF of the ideal circular pupil is therefore

2
H(z)=— (cos’l(a;) —zv1— a:2) (3.26)
T
where x = f/ f,,. If the pupil function The OTF for this case is independent of the orientation
of the spatial frequency component.

The maximum spatial frequency can also be expressed as

1

= — 2
o (3.27)

Im
where Fy is the f-number. For example, if the wavelength is 550 nm and the system is £/2.8,
the maximum spatial frequency is 645 cycles/mm.

3.9 Focal Shift and Spurious Resolution

Focal shift is an aberration of the form W (r) = A,r?. The resulting geometrical point spread
function is a uniformly illuminated circular spot, that is

U(r) = cyl(r/d) (3.28)

where d is the blur diameter of the geometrical spot. The OTF is the Fourier transform of
the point spread function,
H(f) = somb(df) (3.29)

where f is the spatial frequency for any orientation. This is the geometrical approximation
of the Optical Transfer function.

If a geometrical representation of the point spread function is used, the resulting OTF is
the geometrical optical transfer function (GOTF). If a diffraction integral is used to calculate
the point spread function, the corresponding OTF is the diffraction optical transfer function.
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Figure 3.23: Geometrical Optical Transfer Functions for a cylindrical point spread function
of diameter d.

The pupil function of an optical system is space limited and often sharply bounded by
the edge of an aperture. The associated point spread function, according to physical optics
and Fourier transform theory, must be infinite in extent. The OTF, on the other hand, is
frequency limited because it is given by the autocorrelation of a function of limited extent.

In the case of geometrical optics, however, the geometrical spread function is space lim-
ited, so that its Fourier transform, the GOTF is unlimited in the frequency domain. Any
analysis involving the GOTF must be restricted to spot sizes large enough that there is no
significant modulation at frequencies higher than the maximum allowed by physical optics.
For example, the first zero of the GOTF for a uniform spot is given by df = 1.22. If this
zero is to correspond to a spatial frequency less than f,, = 2/¢,, then d must be less than
0.61 €,. In other words, the geometrical spot must be at least as large in diameter as the
central peak of the Airy function.

Fig. 3.23 shows the GOTF for a cylindrical point spread function. Notice that the
modulation switches from positive to negative and back again as the frequency increases.
The ordinary definition of modulation does not allow for the existence of negative values.
Our interpretation of modulation must be extended to include not only the magnitude of
the modulation but also the phase of the modulation. Negative modulation values indicate a
region of phase reversal, in which white bars become black and vice versa. This phenomenon
is called spurious resolution. An example of spurious resolution is shown in Fig. 3.24. The
image on the left is a fully resolved sector target, for which the angular spatial frequencies
increase toward the center of the target. The image on the right has been convolved with a
cylindrical point spread function. Image contrast decreases from right to left as the angular
spatial frequency increases, finally blurring to zero, but then increasing again with reversed
contrast. Several cycles of contrast reversal may be observed if the range in spatial frequencies
is large enough.

Fig. 3.25 shows what happens during contrast reversal. Circular point spread functions of
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Figure 3.25: Spurious resolution.

different sizes are shown centered on the white or black bars of a three-bar target. The actual
image irradiance is product of the point spread function and the ideal image, integrated over
the area of the the point spread function. In this case both functions are binary functions,
so the image irradiance is the difference between the area covered by white and the area
covered by black. If the point spread function is small compared to the bar spacing, then
the center of a black bar will be imaged as black and that of a white bar will be imaged
as white. If the point spread function is large enough, however, the area outside of the bar
on which the cylinder is centered will be larger than the area inside, resulting in contrast
reversal.
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3.10 Optical Transfer Function from Knife Edge Dis-
tribution

The optical transfer function may be calculated by generating a knife edge energy distribution
table at n equal energy increments and then transforming that data.

Let E(s) represent the fractional energy exposed by a knife edge as a function of distance
s measured along the line of travel. The optical transfer function is given by

+oo dF ;
H(f) = / AB(S) jjomss g (3.30)
—o0 ds
For example, E(s) might be given in the tabular form,

E(s) s

0 So

.01 S1

.02 S9

1.0 S100

where n = 100. The function E(s) can be approximated by a sequence of line segments
joining the tabular points. Then between s;_; and s;

dE(s) AFE
pr— . 1
where AFE = 1/n is fixed and
Ai = 8; — Si—1 (332)
Then the integral reduces to
H(f)=(1/n) sinc(fA;)e* /% (3.33)
i=1
where ()
sin(mx
i = 3.34
sinc(z) — (3.34)
and
.§Z’ = (81' + Sifl)/Q (335)

3.11 Geometrical Optical Transfer Function

The geometrical point spread function hy(z,y) is the ray density in the image plane and is
inversely proportional to the Jacobian J given by

92w 92w
J:a(xe,ye): T oroy (3.36)
a(z,y) b B
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where (z, y) are pupil coordinates and (z., y.) are image plane coordinates. We can now
write the GOTF as the Fourier transform of the geometrical point spread function,

H(fo, f,) = / / %exp 275 (fure + foe)] dzedye (3.37)

The Jacobian in the above expression can be used to change the variables of integration,
which gives

H(fo f,) = %//exp [—27;7'60 (fx%—v;/ +fyaa—2/ﬂ dady (3.38)

where A is the area of the exit pupil.

3.12 Effect of Aberrations on the OTF

The effect of aberrations on the OTF is to reduce the contrast. There is no combination of
optical aberrations that will increase contrast at any spatial frequency above the diffraction
limit at that frequency. Wavefront aberration is a phase function, which means that area of
overlap for the pupil autocorrelation of the aberrated pupil must be smaller than that of the
unaberrated pupil.

The effect of small aberrations on the point spread function is to reduce the magnitude
of the central peak, with the extra energy being distributed into the diffraction rings. The
modulation at higher spatial frequencies remains near diffraction-limited so long as a sharp
central diffraction peak remains a dominant feature of the diffraction pattern. The contrast
at low spatial frequencies, however, is reduced by the larger effective spot size due to the
ring structure. For larger aberrations, however, the geometrical OTF approximates the cor-
responding physical OTF. The correspondence includes having zero-crossings at frequencies
inversely proportional to the geometrical spot size and regions of spurious resolution.

As examples, consider the following three aberrations: focal shift W (r) = A;r?, fourth-
order spherical aberration at the paraxial focus W(r) = Ayr?, and balanced fourth-order
spherical aberration (mid-focus) W (r) = Az(r* — r?). Fig. 3.26 shows OTF curves for each
case with peak-to-valley (p-v) wavefront values of 0.25, 0.50, and 0.75 waves. All curves
shown were calculated from diffraction-based point spread functions. The dashed curve is the
OTF for the ideal optical system. For aberrations of 0.25 and 0.50 the OTF remains non-zero
up to the diffraction cut-off frequency. For the 0.75 wavefront curves, the modulation crosses
zero before the diffraction cut-off. The 0.75-wave p-v curve for defocus already resembles
the form expected from geometrical optics. Fig. 3.27 shows diffraction and geometrical OTF
curves for a focal shift of 2.5 waves. The geometrical OTF is the function somb(10z). The
basic features of the two curves are the same, although the location of modulation zero
crossings are not.

Fig. 3.28 shows the OTF plots for optical systems with 0.5 wave p-v of the three aberra-
tions used in Fig. 3.26. All have approximately the same Strehl ratio and rms spot size, so
which is the preferred system? None of the OTF curves are superior for all frequencies. The
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Figure 3.26: Optical transfer functions for small amounts of wavefront aberration. The labels
are the peak-valley waves of aberration for each curve. The dashed line is the OTF for the
ideal system.
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Figure 3.27: Optical transfer functions for focal shift of 2.5 waves. The solid curve is the
diffraction OTF and the dashed curve the geometrical OTF. The thin solid line is the OTF
for the ideal system.

answer depends on the weight given to the response for different spatial frequencies, and this
depends on the application for which the optical system is intended. The problem of how to
trade-off resolution among frequency bands does not seem to come with easy solutions.
The aberrations and point spread functions considered so far have been radially sym-
metric. For the nonsymmetric aberrations such as astigmatism and coma, the modulation
transfer of spatial sine patterns depends not only on the spatial frequency but also on the
orientation of the pattern. Optical tests involving sector targets, such as shown in Fig. 3.24,
are very useful in such situations because all target orientations are represented. In optical
design calculations, the common practice is to find the OTF for horizontal and vertical pat-
tern orientations. In some situtations, however, this practice is not sufficient to characterize
the system. For example, consider fourth-order astigmatism at mid focus, which is given by
a wavefront W (x,y) = A4(2? — 3?). Fig 3.29 shows a projection plot of the MTF. The full
OTF function H(f,, f,) is complex Hermitian (real part even, imaginary part odd) because
it is the Fourier transform of a real function. Note that the cross-sections along the x- and
y-axes are the same, but that the cross-sections along the 45-degree directions are different.
The OTF for astigmatism is a real, even function because the point spread function is
real and even in both x and y. In the case of coma the point spread function has bilateral
symmetry but is neither even or odd, so that the OTF is complex valued. This means
there there is a non-trivial phase component to the OTF. The phase shift has the effect, for
example, of distorting the relative position of image features such as edges rather than merely
softening them. Fig. 3.30 shows the modulation transfer function for coma and Fig. 3.31
shows a contour plot of the imaginary part of the OTF for the same coma wavefront. The
dashed curves are negative contours and the solid curves are positive contours. Coma should
be small in a well-designed optical system, because of its effect on isoplanatism, so that the
imaginary part of the optical transfer function should also be small. This does not exclude
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Figure 3.28: Optical transfer functions for 0.5 wave peak-valley of three different aberrations.
The dashed line is the OTF for the ideal system.

W(z,y) = 0.5(z* — y?)

Figure 3.29: Modulation Transfer Function for astigmatism at mid-focus.
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Figure 3.30: Modulation Transfer Function for coma.

effects of spurious resolution, which can be present in any optical system.
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Figure 3.31: Imaginary part of the Optical Transfer Function for coma. The dashed curves
are negative contour values.
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