Chapter 2

Optical Design Methods

2.1 Mathematical Preliminaries

Merit Function The defect vector fis a set of m functions f; that depend on a set of
n variables x =(z1, T2, ..., Ty):

fi = fz,z,. .. 2,)

fo = f2($17x27 ce axn)

fm - fm(xbx% cee ,an)

The merit function is of the type

o? :Zfz‘2 (2.1)

or

ol =flf=f.f (2.2)
where f is a (m x 1) vector and f' is the (1 x m) transpose of f. The first form of the
expression uses the notation of matrix multiplication. The second form shows a vector dot
(or inner) product.

Linear Defect Model Over a small region about the current design, the defects may
be approximated by a Taylor series,

f=1f,+ As. (2.3)
where A is a (m x n) matrix of first derivatives:
Ofi
A = 24
J 827j ( )

and s are changes in the variables from the current design.
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Gradient The gradient g is a (n x 1) vector given by

g = LYo (2.5)
2
Its components are
100 L, 0fi 0fs Ofu
gi—§8—xi—fla—xi+f2axi+"'+fM8xi (2.6)
then
g=A'f (2.7)

Method of Least-Squares Using the linear model for the defects allows us to express
the merit function as

o = (fy + As) - (fy + As) = 5 - £ + 2gy - s + s'Cs (2.8)
where
gy = A'fy
C = AfA

Let a; represent column j of matrix A. The matrix C is a symmetric (n x n) matrix, whose
elements can be written as a sum over the defects,

g = Y Aiy(fo)i=a; f
=1

Cik = ZAiink =a;-ag
i=1

The matrix C is called the covariance array. The gradient is
g=Alf =gy+Cs (2.9)

The minimum of o2 is obtained by setting g = 0 and solving for s. The resulting matrix
equation

go+Cs=0 (2.10)

is a set of simultaneous linear equations known as the normal equations of least-squares.
Providing that the matrix C is not singular, these equations can always be solved, and the
formal solution s may be written

s=—-C'g (2.11)
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2.2 Design Example 1

In our first numerical example we propose to design a thin lens with specified power and
zero coma. We choose this example because we know that a solution exists and we could
easily solve for it directly.

Specifications Make the lens focal length 20 mm with an /2 aperture (y, = 5 mm).
Let the half field angle u. be 0.1 (5.73°) and the wavelength be 0.55 pym. Let the glass index
of refraction n, be 1.5. Assume the object is at infinity (M = 1).

Defect Function The design variables are the two surface curvatures. The defect
functions are power and coma. The wavefront errors introduced are given by

1,
Waoon = — 2.12
020 2)\ya5¢ ( )

for a change in power d¢ from the target value ¢,, and
1

W131 = A\

y2¢*L (a5 B — agM) (2.13)
for coma. We choose to scale the wavefront values by the common factor of y2/(2)) to make
the elements of the partial derivative matrix closer to unity. The defect functions are then
given by

i = ¢6—9, (2.14)
fo = %¢2L(G5B—G6M)

The defect function for this design is contained in a Matlab function singl.m which
returns a (2x1) defect vector from a (2x1) input (variable) vector.

Derivatives Derivatives of the defect functions may be calculated either analytically
or numerically. In optical design, numerical differences are commonly used. Our technique
will be to use the following central difference formula.

_Ofi  filz; + 1) — filz; — hy)

A
" 6.1']' 2hj

(2.15)

where h; is a small change in the variable z; from its current value. In this example h = 0.001.
The linear defect model can be obtained from the Matlab function calculate_derivatives.
For example, the expression

v=1[0.25 -0.15]/;
[A fz] = calculate_derivatives(@singl,v);

will calculate the linear defect model at the point x = v.
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Iteration 1 We select a starting point of ¢; = 0.25 and ¢, = -0.15. The starting value
of the merit function is ¢ = 0.1511. The linear defect model f = f; + As is

0.1500 0.5 05
- < —0.0183 ) + ( —0.029167 0.19583 )S (2.16)

We do not need to use the method of least-squares to solve this equation for f = 0 because
the number of variables equals the number of defects. The Matlab expression s = A\fz will
give the solution in either case. The solution

—0.2425
S‘( 0.0575 ) (2.17)
is a vector from the starting point to the improved design. The end point, given by

X = x + s, is then ¢; = 0.0075 and ¢y = -0.0925. The merit function at the end point
is 0 = 0.003437.

Iteration 2 The linear defect model for the second iteration is

0.0 0.5 ~0.5
f= ( ~0.0034 ) " ( ~0.030208 0.071875 ) > (2:18)

0.0825
5= ( 0.0825 ) ' (2.19)
The end point is ¢; = 0.09 and ¢, = -0.01. The merit function at the end point is zero, so
no further iterations are required.

The solution is

Summary Fig. 2.1 shows a contour plot of the merit function in the vicinity of the
solution. A logrithmic transformation of the merit function has been applied, of the form

o' =logyg(0 + €) — log(e) (2.20)

where € prevents a negative infinity as ¢ — 0. € = 107% in Fig. 2.1. The contour lines are
spaced by 5 dB, and the maximum contour range is 46 dB. The heavy line segments show
the steps in the iterative solution.

2.3 Singular Value Decomposition (SVD)

Although we did not need to use to least-squares methods in the first example, singular value
decomposition or SVD provides additional insight into the nature of the design process. SVD
is a set of techniques for dealing with sets of equations that are nearly singular. It is the
preferred method for solving most linear least squares problems.
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Figure 2.1: Merit function contours for design example 1. Heavy line segments show steps
in iterative solution.
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The SVD method is based on the following theorem of linear algebra. Any m x n matrix
A, where the number of rows m is greater than or equal to the number of columns n, can
be written as the product of a m x n column-orthogonal matrix U, a n x n diagonal matrix
W with positive or zero elements, and the transpose of a n x n orthogonal matrix V. This
decomposition is given as

A =UWV! (2.21)

The matrices U and V are each orthognal in that the dot products of the columns are
orthonormal. If u; is a column of U, for example, then

u; - u; = 6ij (222)
U'u =1 (2.23)
(nxm)imxn) = (nxn)

where I is the identity matrix.

Example 1 The singular value decomposition of the A matrix given in Eq. 2.16 is
found by the Matlab expression [U W V] = svd(A,0), or

T
_0.9743 02252 ) [ 0.7253 0 _0.6808 0.7325
T
UWV? = ( 0.2252  0.9743 ) ( 0 0.1149 ) ( —0.7325 —0.6808 ) (2.24)

2.3.1 SVD Diagrams

The matrix V has the properties of a rotation matrix, converting the solution vector s into

another vector s’ by
s'=VTs. (2.25)

The matrix U can be interpreted as a projection matrix, converting the defect vector f of
length m into another defect vector ' of reduced length n by

f' = U'f. (2.26)

A projective transformation of a vector reduces the length of the vector. Thus the merit
function defined by f’ - f’ is smaller than the function defined by f - f. The difference is the
predicted residual value after optimization.

The transformed defect equations are now

f' = aj + Ws/, (2.27)

which is easy to solve because W is diagonal. If w is a n x 1 vector with the diagonal
elements of W, then the each element of the solution vector is given by

!/
s=—20 (2.28)
w
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Figure 2.2: Construction of SVD diagram. Dashed line is merit function contour. Arrow is
in direction of negative gradient. Medium line shows solution vector, and points to center
of ellipse.

Furthermore each element of the gradient vector is given by

g=—2uwf (2.29)

Example 2 Suppose that the transformed defect equations are given by

, —2 025 0 _,
f:<3>+< 0 2>x. (2.30)

The merit function is then given by
o = (=2 +0.252)% + (3 + 2y)*. (2.31)

The contours of the merit function are ellipses passing through (z, y) and centered at (8,
-1.5). The merit function is zero at the center of the ellipse. At the point (0, 0), 0% = 13.

Fig. 2.2 is a diagram showing SVD geometry. The dashed curve is a contour of the merit
function. The principal axes, drawn as heavy lines, have a length proportional to 1/w. The
longer axis (major axis) is of fixed length, and the shorter axis is scaled proportionally. The
ratio of axis lengths is 1:8 in this example, since that is the ratio of the smallest to largest
diagonal elements. The arrow shows the direction of the negative gradient vector, and will
always be perpendicular to the contour lines. The light line shows the solution vector, so it
is drawn from the starting point to the center of the ellipse.

SVD diagrams like that in Fig. 2.2 can be added to a merit function contour plot. Fig. 2.3
is the same as Fig. 2.1 except that SVD diagrams have been added for each iteration.

2.4 Design Example 2

In this numerical example we add spherical aberration to the list of defects to be corrected.
We choose this example because we know that no a solution exists that gives zero spherical
aberration, so that defect is nonlinear, and the minimium in spherical aberration does not
occur at the same design that gives zero coma, so a balance is implied. The spherical
aberration defect is

1
fg = 1—6:[/3@53(&1 -+ CLQ(B — agM)2 — CL4M2) (232)
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Figure 2.3: Merit function contours for design example 1. SVD diagrams show show steps
in iterative solution.
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Figure 2.4: Merit function contours and SVD diagrams for design example 2.

A Matlab defect function for this example is contained in sing2.m.

Fig. 2.4 is a contour of the norm of the defect function showing an optimization trajectory
with five iterations. The nonlinearity of the defect function is evident from the lack of
symmetry of the contours. This can readily be seen by viewing the contours obliquely,
sighting along the major axis. The following results summarize the SVD matrices for the
first, third, and fifth iterations.

Iteration 1 At the starting point (¢; = 0.25, co = -0.15), the partial derivative matrix
is
0.5 —0.5
A= —-0.0292 0.1958 (2.33)
0.7891 —1.3307

and the SVD equation is

—0.4098  —0.8321 1.7030 0 —0.5416 —0.8407 \' —0.1500

0.1059 —0.4537 0 01797 0.8407 05416 =1 00183

—0.9078  0.3190 ' ' ‘ —0.1323
(2.34)
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Figure 2.5: One-dimensional search along least-squares direction.

Iteration 3 The starting point is (¢; = -0.074541, ¢; = -0.173431) and the SVD equa-
tion is

—0.8269  —0.5597 0.8501 0 —0.6260 —0.7799 \' —0.0006

0.1437  0.1159 0 04375 07799 —0.6260 | 5= 0.0067

—0.5437 0.8205 ' ‘ ‘ —0.0199
(2.35)

Iteration 5 The starting point is (¢; = 0.071000, ¢; = -0.029008) and the SVD equation

is
—0.9918 = 0.973 0.7129 0 —0.7039 —-0.7103 f 0.0
0.0490 —0.8884 0 0.0330 0.7103  —0.7039 s= | —0.0008
0.4486 —0.1181 ' ' ' 0.0018
(2.36)

The linear defect model predicts a quadratic profile for the merit function. Along any
one-dimensional projection this profile has the general form

o? =ct + (T — x)? (2.37)
where ¢ and ¢; are constants. According to our model, the merit function must be symmetric
about the minimum z = z,,. In practice, this is usually not the case. In Fig. 2.4, for example,
the second and subsequent iterations are in the right direction but clearly underestimate the
distance to the minimum. In other situations, the least-squares solution may overestimate
the distance to a minimum.
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The strategy usually employed next is to conduct a one-dimensional search for a minimum
in the direction suggested by the least-squares solution and use the distance to the solution
as a starting step size. Fig 2.5 shows a plot of such a one-dimensional search, starting at
the third SVD diagram in Fig. 2.4. The vertical axis displays the rms value ¢ of the merit
function. The horizonal axis is the search vector s given by

S = pSm, (2.38)

where s,, is the least-squares solution vector and p is called the damping parameter. Setting
p to 1 yields the least-squares solution vector. According to the linear model the merit
function should attain its original value again at p = 2. The actual merit function value has
its minimum value between p=1.5 and p=2 and has not returned to the original value by
p=3.

The merit value o; for the linear defect model as a function of the parameter p is given
from the Matlab expression sigmal = norm(fz+p*A*s). The actual merit value o3 is given
in Matlab by the expression sigma2 = norm(sing2(x+p*s)).

2.5 Damped Least Squares

The general mathematical technique of damped least squares is generally attributed to Lev-
enberg [4] in 1944, but the method has been reinvented, modified, and adapted in various
ways by numerous contributors since then.
The basic idea of damped least-squares is to start with the basic equation for the least-
squares condition
go+Cs=0 (2.39)

from Eq. 2.10, where gy is the gradient at the starting point, and augment the diagonal of
the matrix C by the addition or factoring of a damping coefficient. Modifications of the
form ¢; + p, for example, are called additive damping and those of the form ¢;(1 + p) are
called multiplicative damping. In the case of additive damping, the equation for the damped
least-squares solution reduces to

go+ps+Cs=0 (2.40)

As the damping factor p increases, the third term in the equation above becomes small and
the solution vector becomes parallel to the gradient vector, that is

1
s=--g 2.41
;80 (2.41)

For small values of damping, the solution approaches undamped least-squares. Sufficiently
large values of damping guarantee a non-singular solution to the often ill-conditioned least-
squares system of equations. For large values of damping, the solution approaches a small
step in the opposite direction to the gradient. The choice of the best value of p results from
a one-dimensional search for a minimum.
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Numerous schemes have been explored for improving the effectiveness of the damping
coefficient. The most successful of these involve using different damping coefficients for each
variable, and making the coefficients proportional to the second derivative.

A Taylor series expansion of a scalar function of several variables may be written as

1
o' =o0p+go-s+ 5sTHs (2.42)

where H is the Hessian matrix of second derivatives, defined as

820.2

H; = 2.43
ik 85(3](9.'Ek ( )

For the least-squares merit function, the Hessian matrix may be expressed as

H,; = z
ik 1:21 8%89@;
0fi 0fi P fi
= 2 i 2.44
The linear defect model predicts that
2 _ 2 t

o =05+80-s+s'Cs (2.45)

and matches the first and second terms of the Taylor series, but it leaves out the second
derivatives in the Hessian matrix, which is

m 82 fz
Hy,=2(C+ i 2.46
=2 (Ot 3 fige i (2.46)
As an alternative to performing lengthly calculations of the second derivative, a damping
term proportional to the diagonal elements of the second derivative matrix may be incor-
porated into the damped least-squares equations. Dilworth [1], for example, has been very
successful in using this technique in his optical design software.

2.6 Optimization Tactics

The strategy employed by the traditional damped least-squares method generates a solution
vector which changes both in magnitude and in direction as a function of the damping
coefficients. Our approach will be to fix the direction of the solution vector and vary its
magnitude. We will select either the direction given by least-squares or the direction opposite
the gradient.

A single optimization cycle will consist of the following steps.

1. Calculate the first-derivative matrix A and construct its singular-value decomposition.
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2. Set any diagonal elements less than a given tolerance to zero. This eliminates the
singular values from the matrix and prevents division by zero in the calculation of the
least-squares solution.

3. Choose either the least-squares solution or the gradient solution vector as the test
solution vector sy,.

4. Calculate the defect vector for the solution vector s = ps,, with p = 1. Then try to
bracket the minimum by doing one of the following for a fixed maximum number of
steps.

(a) If the resulting merit figure is less than the starting merit figure, increase p by a
factor of 1.6. Continue to increase p by factors of 1.6 until the merit figure begins
to increase again.

(b) If the resulting merit figure is greater than the starting merit figure, decrease p
by a factor of 0.4. Continue to decrease p by factors of 0.4 until the merit figure
is less than the starting value.

5. Using three values that bracket the minimum, construct a quadratic interpolation of the
merit figure and calculate the damping factor corresponding to the vertex (minimum)
of the resulting parabola. Evaluate the merit function at that point.

6. Choose the damping factor and corresponding solution vector for the smallest merit
figure as the final solution. Return an error message if the merit function has not
changed at all.

The choice of 1.6 and 0.4 as expansion and reduction factors, respectively, is not terribly
important. These values do correspond approximately to those suggested by a “golden
section” search. The exact values would be 1.61803 and 0.38197.

If the linear defect model is approximately correct, the merit function should be nicely
parabolic. Then a single step past the predicted minimum will serve to bracket the minimum,
and the parabolic interpolation ought to take us in one more step to the minimum itself (if
the original solution step of p=1 were not already there).

An elaborate search for the exact minimum is not warranted. If the linear defect model
is correct (at least locally), then a single parabolic interpolation should be sufficient. If the
actual defect function is non-linear, then we should be seeking to change directions, which
requires another SVD calculation.

2.7 Design Example 3

The third design example is the landscape lens, which we encountered earlier when we
discussed the stop shift equations. This time we choose to correct the coma Wi3; and
astigmatism Wsoo wavefront terms by varying the shape of the lens and the distance to the
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Figure 2.6: Zero contours of Wi3; (solid) and Wagy (dashed) for landscape lens.

stop. The curvature of the second lens is adjusted by an angle solve appropriate for the
desired power of the lens. The Matlab function land.m is a defect function for this design.

Fig 2.6 shows the zero contours of Wi3; (solid curve) and Wayss (dashed curves). There
are two solutions, one with the stop in front of the lens, and one with the stop behind the
lens. The only control over spherical aberration is to reduce the aperture.

Fig 2.7 shows the merit function contours, which are spaced logarithmically. The variables
are the curvature of the first surface (horizontal axis) and the distance from the lens to the
stop (vertical axis). The curvature of the second surface is calculated using a paraxial solve
to fix the focal length of the lens. The starting point for the optimization is (0.25, -20).
The first iteration takes the design into a curved valley. The next few iterations track the
valley to its lowest point. The last iteration is a very short correction step to the exact
minimum. The progress of optimization is shown graphically in Fig 2.7. The dots are points
where an optimization cycle (SVD calculation) is started. The heavy lines show the direction
of the least-squares solution based on SVD and the distance to the minimum based on a
one-dimensional search in that direction. The last dot is the final end-point.

The data and charts in Fig. 2.8 provide a more detailed record of the progress in optmiza-
tion. The merit figure was 10 at the starting point. The first iteration underestimated the
distance to a minimum, resulting in a damping factor of 2.6. There was a dramatic decrease
in the merit figure of five orders of magnitude. The next few iterations were characterized
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Figure 2.7: Merit function contours and optimization track for landscape lens.
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# damp o® logy(c?)
+15
0 0 2.11e04 19.32
1 2.62 6.61e-02 13.82
2 0.041 6.10e-02 13.79
3 0.048 5.71e-02 13.76
4 0.066 5.30e-02 13.72
5 0.085 4.80e-02 13.68
6 0.233 3.19e-02 13.50
7 0.509 1.69e-02 13.23
8 1.24 6.07e-04 11.78
9 1.04 2.95e-07 8.47
10 1.00 1.01le-15 0.00
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Figure 2.8: Merit function value and damping vs. iteration for landscape lens.
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Figure 2.9: Merit function contours and optimization tracks for achromatic doublet lens.

by a high degree of damping (small values of p) and very slow changes in the merit figure.
As the minimum was approached, the damping factor approached unity, an indication that
the merit function is adequately represented by a linear defect model, and the merit function
itself decreased more rapidly with each step. The merit figure at the end point was 10715,

2.8 Design Example 4

The fourth design example is the achromatic doublet lens, which we studied previously. The
powers of the lenses are used to control the focal length and the longitudinal chromatic
aberration. The resulting equations are linear and may be solved in one step. The Matlab
function achromatl.m contains a defect function for the power variables. The shapes of the
lenses are used to correct the coma Wi3; and the spherical aberration Wy,y. The Matlab
function achromat2.m contains a defect function for the shape variables. The shape variables
are orthogonal to the power variables. Changing the shape does not alter the solution for
the powers.

Fig. 2.9 shows logarithmic merit function contours for the doublet lens as a function of
the shapes of the elements. The starting point for optimization was (6, 6). The solid track
from (6, 6) is in the direction of the least-squares solution and sends the optimization process
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Figure 2.10: Optimization tracks for least-squares and gradient searches for achromatic
doublet lens design.

toward the bottom solution. The dashed line from (6, 6) is in the direction of the gradient
and sends the optimization process toward the top solution. The second solid track is an
optimization sequence using least-squares vectors, but starting from the results of the first
gradient step.

Fig. 2.10 magnifies the region of the contour diagram in the vicinity of the top mini-
mum. There are two optimization tracks shown, one following the directions from least-
squares solutions and the other directions from gradient solutions. Notice how the gradient
search switches direction with each iteration, with each successive step becoming smaller
and smaller. Eventually the process will reach the actual minimum, but we lose patience
and stop looking long before the minimum is reached. It would be good fortune, indeed, if
the gradient happened to point precisely in the direction of the actual minimum. As bad as
continued use of the gradient is, however, we must not overlook its occasional usefulness. In
this example it started us on the track to the top minimum.
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2.9 Design of the Cooke Triplet Lens

The Cooke triplet lens is of interest because it represents the simplest lens form capable of
correcting the five fourth-order wavefront aberrations: spherical aberration, coma, astigma-
tism, field curvature, and distortion; and both lateral and transverse chromatic aberration.
The design variables are the power and shape of the three elements and the two element
separations. The stop is set at the second lens. One power variable is used to set the focal
length of the lens. The remaining seven variables can be used to control the aberrations.
An anomaly in the solution for power is shown in Fig. 2.11. If the power of the first lens
¢ is given by
b =1 (2.47)
51
where ¢; is the separation between the first and second lens, then the axial ray height (y,)2
will be zero at the second lens so that it can not be the stop location. Furthermore, wherever

the power of the second lens ¢, is given by

11— ¢i(t + 1)
ta  1— ity

where t5 is the separation between the second and third lens, then the axial ray height (y,)3
will be zero at the third lens so that it can not contribute to the total power of the system.

In the limiting case of three lenses in contact (zero element separation), the distortion
and transverse chromatic aberrations are zero. The three powers can be used to control the
total power, longitudinal chromatic aberration, and Petzval curvature. This yields a set of
three equations in three unknowns:

o5 (2.48)

1+t = ¢

ﬂ+@+@ = 0 (249)
1 Mo ng

bt b _

where ¢; are the element powers, n; the element indices of refraction, and v; the corresponding
Abbe numbers. The first equation determines the power, the second the Petzval curvature,
and the third the longitudinal chromatic aberration. Solutions to this set of linear equations
exist provided that three different glass types are chosen. Two of the shape variables can
then be used to control spherical aberration and coma. We know this is possible from our
study of the achromatic doublet. There is one shape variable left with which to control
astigmatism, but the shape of a lens (with the stop at the lens) does not affect astigmatism.

The only way to control astigmatism is to invoke the stop shift equations, as we did in
designing the landscape lens. If the stop is located at the second lens, then the outer two
lenses form a pair of landscape lenses, one with the stop in front and the other with the stop
behind, each of which can be designed to contribute zero astigmatism. All that is required,
of course, is that the total astigmatism contribution be zero.
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Figure 2.11: Anomalous conditions for power variables in triplet lens.
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Figure 2.12: Zero-level contours for Petzval curvature and chromatic aberration for fixed
lens separations.

In the case of separated lenses, the equations for Petzval curvature, power, and axial
chromatic aberration can be written as

(9,600, -

(ya¢)1 + (ya¢)2 + (ya¢)3 = Yo (2-50)

) (), (), -
<V 1 4 2 4 3

The non-linearity of these equations is shown in Fig. 2.12. The lens separations are fixed at
arbitrary, different non-zero values. An angle solve is used to adjust the total power of the
lens. Zero contours of Petzval curvature and chromatic aberration (axial and lateral) are
shown on the figure. Also shown, as thick curves, are the anomalous conditions of zero y,
at either the second or third lens. Curved contours are an indication of nonlinearity. So is
the existence of multiple solutions. In this case, there are six conditions in which two of the
three aberrations are zero.

By introducing the stop shift we no longer have a compact triplet, so that distortion
and transverse chromatic aberration is induced. Furthermore the focal length, Petzval cur-
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Figure 2.13: Zero-level contours for spherical aberration, distortion, and astigmatism.

vature and longitudinal chromatic aberration depend on the element separations. Finally,
the element shapes must be adjusted to maintain zero spherical aberration and coma. As a
result, a change in any variable will have some effect on almost all of the aberrations. We
are compelled then to use an iterative process to arrive at a simultaneous solution for zero
values of all aberrations.

In our previous examples we were able to reduce the designs to problems involving two
variables, so we could draw contours of the merit function. In the case of the triplet, there
is no true partitioning of variables and aberrations. We may selectively pair variables in
various ways and try to plot their interactions, as shown in Fig. 2.12 and Fig. 2.13. The
starting point in Fig. 2.13 is one of the two classical solutions to the thin-lens Cooke triplet.
The bending of the second lens is adjusted to eliminate coma. Zero contours are shown for
spherical aberration, distortion, and astigmatism. The variation in astigmatism with bending
arises from the stop shifts for outer lenses. The coincidence of the three zero contours occurs
because we started with solution values for the powers and lens separations.

A full parameter search generally finds one of the two classic fourth-order solutions to
the triplet lens. These solutions do not make good lenses, however, because they neglect
higher-order aberrations. The triplet design is of particular interest more for what it reveals
about the design process. One usually sees a few iterations of rapid improvement in the
figure of merit, followed by many steps in which the figure of merit changes slowly and the
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search is highly damped. Near the final solution, the merit function decreases dramatically
in two or three iterations, without damping, until it reaches zero.

A measure of the difficulty of the design can be obtained by looking at the singular value
decomposition at the solution point. The singular values range from a maximum of 33000
to a minimum of 0.05 for one of the two classic triplet solutions found.

Finding triplet solutions is by no means a simple activity. From these diagrams alone,
for example, can you deduce where to find both solutions to the Cooke triplet?

64



Bibliography

1]

[9]

Donald C. Dilworth, “Pseudo-second-derivative matrix and its application to automatic
lens design,” Applied Optics, 17: 3372-3375 (1978).

Donald P. Feder, “Automatic Optical Design,” Applied Optics, 2 1209-1226 (1963).

Robert E. Hopkins, “Optical design 1937 to 1988 ... Where to from here?” Optical
Engineering, 27: 1019-1026 (1988).

K. Levenberg, “A Method for the Solution of Certain Nonlinear Problems in Least
Squares,” Quart. Appl. Math. 2: 164-168 (1944).

T. H. Jamieson, Optimization Techniques in Lens Design, Monographcs on Applied
Optics, No. 5, American Elsevier (1971).

Abrahim Lavi and Thomas Vogl, Eds., Recent Advances in Optimization Techniques,
John Wiley (1965).

William G. Peck, “Automated Lens Design,” in Applied Optics and Engineering, Vol
VIII, Robert R. Shannon and James C. Wyant, (Eds.), Academic Press (1980).

A. K. Rigler and R. J. Pegis, “Optimization Methods in Optics,” in The Computer
in Optical Research, B. R. Frieden (Ed.), Topics in Applied Physics Vol. 41, Springer-
Verlag, (1980).

David R. Shafer, “The triplet: an ‘embarrassment of riches’,” Optical Engineering, 27:
1035-1038 (1988).

65



