20

1.6

Chapter 1 Unix Systems Programming: The Big Picture

There is no conceptual difference between the original be/de model and the World
Wide Web. It is probably no coincidence that the Web first grew up on Unix systems.”

CAN | TRY TO DO ONE?

We have now looked at the first two questions. We looked at several aspects of Unix
and asked, “What does that do?” We have asked, “How does that work?” In a few
cases, such as bc/dc, we saw at least a partial answer.

The third question in our approach is “Can I try to do one?” In this section, we
write a version of the Unix more program.

First, “What does more do?”

more displays a file one screenful at a time. Most Unix systems come with a large text
file called /etc/termcap used by some editors and video games. If you want to page
through this file, you can type

¢ more /etc/termcap

You will see the first screenful of the file. At the bottom of the screen, the more pro-
gram will print, in reverse video, the percentage of the file you have seen. You may
press the space bar to see the next page, you may press the Enter key to see the next
line, you may press the letter “q” to quit, and you may press “h” to see the help screen.
Notice that you do not have to press the Enter key after pressing the space bar or
“q” or “h.” The program responds at once.
The three ways to invoke more from the command line are as follows:

¢ more filename
$ command | more
$ more < filename

In the first case, more displays the contents of the named file. In the second case, the
program specified by command runs, and its output is displayed page by page. In the
third case, more displays the contents of what it reads from standard input. Standard
input happens to be attached to the specified file.

Second, “How does more work?”

After running more a few times, we can guess that the logic probably goes something
like this:

+———-> show 24 lines from input
| +--> print [more?] message
| Input Enter, SPACE, or g
| +-- if Enter, advance one line
+--—— 1if SPACE
if g --> exit

By the way, it was Amy Chused, a student in my course, who pointed out the connection between bc/de and
all TCP/IP client-server programming.

.o Ldn i iry to vo une’ £1

o . . .
Spléii%re(;g;z;iri; rslhould bethﬂe)uble about input, just like the real more. That is, if the user
ame on the command line, we read from that fi ilename i
Sp : , ile. If no filename -
ified on the' command line, the program reads from standard input. R
Here is a first draft of our own version of more:

N .
/* morell.c - version 0.1 of more
*

*/
#include <stdio.h>

read and print 24 lines then pause for a few special commands

#define PAGELEN 24
#define LINELEN 512

void do_more(FILE *);
int see_more();

int main(int ac , char *av[])
{
FILE *fp;
if (ac == 1)
do_more(stdin);

else
while (--ac)
if ((fp = fopen(*++av , "r")) != NULL)
{
do_more(fp) ;
fclose(fp);
}
else
exit(1);
return 0;

}
void do_more(FILE *fp)

/*
* read PAGELEN line
g s, then call see more() for further instructions
{
char line [LINELEN] ;
int num of lines = 0;
int see_more(), reply;
while (fgets(line, LINELEN, fp)){ /* more input */

if (num of_ lines == PAGELEN) {
reply = see_more();

/* full screen? */
/* y: ask user */

if (reply ==) /* n: done */
break;
} num_of_lines -= reply; /* reset count */
if (fputs(line, stdout) == EOF) /* show line */
exit(1l); /* or die */
num_of_lines++; /* i
) count it */

22

Chapter 1 Unix Systems Programming: The Big Picture

}

int see_more ()}

" i advance
* print message, wait for response, return # of lines to

* g means no, space means yes, CR means one line

*/

{
int c;
/* reverse on a vt100 */

printf ("\033 [7m more? N33) /* get response */

while((c=getchar()) != EOF)
{ if (¢ =="q") /* q > N */
0;
if (re‘?mfn) /* ' ' => next page */
i c ==

/* how many to show */
/* Enter key => 1 line */

return PAGELEN;
if (¢ == '"\n')
return 1;

}

return 0;

The code consists of three functions. The main function. decides whethelr to ;:Sz::c;
data from a file or from standard input. Having settlec(ij pnlan 11;1p1t1t itrezi;n,s rcn?;zn;f)ul o
i i led do_more to display that strea
that input stream to the function cal lo_
screenflzll. The do_more function, in turn, displays a screenful of text and then calls the
function see more to ask the user what to do next.
Compile and run it as follows:

$ cc morell.c -o more0l
$ morell morell.c

i displays 24 lines of the file and prints, in
This program works pretty well. The program
eye-citclgling reverse video, the prompt . Press the Enter key to advance the
i ne line. This program needs more work. _
dlsplalynoparticular, thlzr message stays on the screen and scrolls 1'11p with thsz
text. Also, if you press the space bar or the “q” key, nothing happens until you pre

Enter. That’s not so good. Also, the little message is. still there. -
Writing a version of more illustrates the basic fact about Unix programming.

Unix programming is not as difficult as you think it is, but it is not as easy as you
first imagine.

The program performs a clearly defined task. The logic behind that tilsltlliihprte:;i}:: 1(ilyear
i i isi i forms that action is not all tha .
f its action. Devising an algorithm that per
o Then we begin to see subtle problems. How do we get the program to rcesfpt(;lndf 'tl(e);
keystrokes without having to press Enter? How do we figure out the perce;ré‘; S(; . el:(e1 e
we have displayed? How do we erase the prompt after the user p y?

1.6 CanlTry to Do One? 23

That cannot be too tricky, but first we need to finish comparing other features.
How well does our program handle input streams? The main function checks the num-
ber of command-line arguments. If no filenames are specified on the command line, the
program reads from standard input. That makes it possible to put more at the end of a
pipeline, as in
$ who | more

This pipeline runs the who command to list all users on the system and sends that list of
users into the more command. The more program displays 24 lines at a time, a useful thing
if the number of users exceeds 24. Let us test our program, not with who, but with 1s:

$ 1s /bin | more01l

We expect to see the contents of the /bin directory, 24 lines at a time.

When you run this, you will see that more0l does not pause after 24 lines. What
could have gone wrong? Here is the reason. Our more01 program reads and prints 24
lines of input from the 1s command. When more01 reads the 25th line, it prints the
prompt and waits for user input. Our program waits for the user to press the
space bar, the Enter key or the letter “q.”

Where does that user input come from? The program uses getchar, which reads
from standard input. But the notation

$ 1s /bin | moreo0l

attaches the standard input of more01 to the output of 1s. Our version of more tries to

read user commands from the same stream as the data. The following picture shows the
situation:

FIGURE 1.14

more reads stdin.

How does the real more solve this problem? That is, how can the program read
data from standard input and still get user input from the keyboard? The answer is to
read from the keyboard directly. Figurel.15 illustrates what the real version of more
does.

There is a special file in every Unix system called /dev/tty. This file is actually a
connection to the keyboard and screen. Even if the user changes the standard input or
standard output of a program by using the < or > characters, the program can still
communicate with the terminal by reading and writing data to the /dev/tty file.

24 Chapter1 Unix Systems Programming: The Big Picture

FIGURE 1.15

/dev/tty _ /

who reads user input from a terminal.

s two sources of input. The standard input of the pro-
f who. But more also reads data from /dev/tty. more
n. When it needs to ask the user
to quit, it reads the input from

The diagram shows more ha
gram is attached to the output o
reads lines from the file and displays them on the scree
whether to display one more line, one more page, or

/dev/tty
With this new knowledge, we can enhance more0l.c to morel2.c!

/* more02.c - version 0.2 of more
pause for a few special commands

* read and print 24 lines then

* feature of version 0.2: reads from /dev/tty for commands
*/

#include <stdio.h>

#define PAGELEN 24
#define LINELEN 512

void do_more(FILE *);
int see more(FILE *);

int main(int ac , char *avi])

{
FILE *fp;
if (ac ==1)
do_more(stdin);
else
while (--ac)
if ((fp = fopen(*++av , "r" }) f= NULL)
{
do_more(fp) ;
fclose(fp):
}
else
exit(1l);
return 0;

}
void do_more(FILE *fp)

1. Lan 1 iry 1o vo vne’

/
/Iead PAGELEN llIleS, then call see more() for fur ther instructions

{
char line [LINELEN] ;
int num_of_lines = 0;
int see_more(FILE *), reply;
FILE *fp_tty;
fp_tty = fopen("/dev/tty", "r"
. y", "r"); /* NEW: cmd st *
Y e NEW: stream */
p_éxit(1)§ULL) /* 1f open fails */
; /* no use in running*/
while (fgets(line, LINELEN, fp)){ /* more input x/
if (num_of_lines == PAGELEN) ({ /* full screen? */
Feply = see more(fp_tty); /* NEW: pass FILE * */
if (reply == 0) /* n: done */
break;
} num of_ lines -= reply; /* reset count */
if (fputs(line, stdout) == EOF) /* show line */
exit(1l); /* or die */
} num_of_lines++; /* count it */
}
int see_more(FILE *cmd
i) /* NEW: accepts arg */

* .
) print message, wait for response, return # of lines to advance
g means no, space means yes, CR means one line

*/
{
int c;
pr%ntf("\033[7m more? \033[m"); /* reverse on a vtl00 */
while((c=getc(cmd)) !'= EOF) /* NEW: reads from tty */
: :
if (¢ =="'q") /* g -> N */
return 0;
if (c==" ") /* ' ' => next page */
. return PAGELEN; /* how many to show */
if (¢ == "\n") /* Enter key => 1 line */
return 1;
}
return 0;
}

Compile and test this version:

$ ce -o morel2 morel2.c
¢ 1s /bin | moreo02

26

Chapter 1

Unix Systems Programming: The Big Picture

This version, more02.c can read data from standard input and still read commands
from the keyboard. Notice how trying to write a standard Unix program led us to learn
about the file called /dev/tty and its role as a direct connection t0 the user’s terminal.

Our program still needs work. We still have to press the Enter key to get the pro-
gram to respond. Also, the “q” and space characters show up on the screen. Somehow,
the real version of more changes input so characters are delivered immediately to the
program; the Enter key is not needed. The real more also arranged it so characters you
type do not show up. If you press “q”, the program quits, but you do not see the letter

“q” on the screen.

Instant Input: How Does That Work?

It turns out that connections to terminals have settings. You can adjust the settings of
the connection so characters are delivered as they are typed instead of only after the
user presses Enter. You can adjust the settings so the characters the user types do not
show up on the screen. You can adjust all sorts of settings that control the way the ter-
minal delivers data to your program.

As we delve into this problem, more details emerge in our picture. Now, it looks
like the following:

character
processing unit

FIGURE 1.16

The connection to the terminal has settings.

The new item in this picture is the control unit added to the connection to
/dev/tty. That control unit lets a programmer adjust how the connection between the
program and the terminal works, the way dials and switches on a radio let you adjust
how the connection between the tuner and the speaker works.

To write a complete, smoothly operating version of more,
connection control unit and how to program it.

We also need to answer some other questions. How do we find the percent of the
file shown? The real version of more displays the percent of the file the user has seen.
How can we add that feature? The operating system Knows how large the file is. We
just need to learn how to ask the operating system for that information.

What about the reverse video? What about the number of lines? Some displays
use different methods to create reverse-video text. Different displays have different
numbers of lines. A fixed size of 24 lines and the vt100-specific reverse-video codes

we need to study that

1.7
1.7.1

1.7.2

1.7 A Lot of Questions and a Map 27

n

A LOT OF QUESTIONS AND A MAP
What Now?

We have defined the proj i
project for this book. Unix is i
We hay 3 an operating system that a -
eral p; ncc)ipi;rt:c;lse. the system at the same time. Users can run prggrams and \gggqsvsv?‘:,h
commuter ang :crrlzz.s Th:,se pliog[rjams can communicate with one another, within olne
, networks. Users run programs to ma ir fi ’
nage th
transf;lr anccl1 transform data, and communicate with other usgrs eir fles process datz,
ow .

crating Systecr)n ag ;Ee::e; progranlls wccl)rk? What do the programs do? What does the op

‘ ? we explored the mai -
i p main features of the system, we asked many

We now begin to answ i

er these questions. O

dommo . Our case study of the m

nstrates the approach we shall take. We look at a real program osrti(;; I\?vrl?atn(:

, at i

And Now for the Map

We need a map for our journey. Here it is:

FIGURE 1.17

A diagram of the main structure of a Unix system.

mem;[r'l}lllissdc;?vgiga;g iorftz Un{[x system depicts the main structure of any Unix system. The
ooty 2o soen Usys em space a.nd user space. The kernel and its data structures
o e terminélysz p?ocesses live in user space. Some users connect to the sys-
oo ; the lines to.these terminals connect to the kernel. Files are

ystem on a disk. Devices of various sorts are attached to the kernel and

made available to user proce i
sses. Finally, there i i
Commect 10 the system thyongh & networkyconneCtiso:;ll network connection. Some users

28

173

Chapter 1 Unix Systems Programming: The Big Picture

In each section of the book, we focus on parts of this diagram. We zoom in on
each component to explore services the kernel offers and to explain the logic and data
structures the kernel uses to provide those services.

By the end of the book, you will have studied each part of this picture and will
have seen all the ideas and techniques needed to write complete Unix system pro-
grams—Internet bridge, for example.

What Is Unix? History and Dialects

This book explains basic ideas and structures of Unix and shows how to write pro-
grams that work in a Unix system. But what is Unix? Where did it come from? What
exactly can you expect from this book?

First, where did Unix come from? Unix started as a kernel and set of tools creat-
ed around 1969 at Bell Laboratories by a few computer scientists to solve specific tech-
nical problems. Unix was not a commercial product. In fact, during the 1970s, Bell Labs
distributed Unix software, including complete source code, to schools and research
centers for nominal fees. Researchers at Bell Labs and many other computer scientists
spent years learning from, improving, and adding to the original programs. During the
1980s, several companies licensed Unix source code and built customized versions of
the system. The two main centers of Unix development were AT&T and the Universi-
ty of California at Berkeley. AT&T developed a version called System V, and UCB de-
veloped versions collectively called BSD. Most varieties of Unix derived from one or
both of these main versions. Over the years, ownership passed, in a sequence of sales,
from AT&T through a sequence of companies, UCB stopped working on Unix, and
various groups tried to reconcile and standardize the system.

Independent of deals and standards, the basic design and principles of Unix
spread through academic and commercial computing, Different dialects and models of
the system evolved. Some versions include specialized features, like real-time process-
ing. Through all these adaptations and changes, Unix always retained a core architec-
ture and consistent set of functions. Although the exact internal structure and set of
tools in a version of Unix from AT&T in 1980 differ from those in a version of Unix
written in Helsinki in 1991, system programs written for that 1980 version can, with
minimal changes, compile and run on the Finnish version.

What, then, is Unix? The term a Unix system, increasingly is used to refer to sys-
tems that follow the core structure and provide the functions common to all these
variations. Some systems look like and work like Unix, but are not derived from AT&T
or UCB code. The GNU/Linux combination of tools and kernel is a well-known Unix-
like system. One formal description of the system interface is called posix. To under-
stand, read, and write Unix programs, you need to know more than a single standard,
though.

Unix has a long and varied history; how much of Unix can you expect to learn
about from one book? We concentrate on structure, principles, and techniques com-
mon to all Unix systems. Some details are left out, some operations are duplicated, and
all ideas are explained in practical contexts.

I do not include every detail, and sometimes I suggest you check local documen-
tation. This book is not a comprehensive reference on every aspect of every version of

Summary 29

Unix. In fact, explorin i i
act, g and using on-line documentati i
an essential part of knowing about Unix. ton to learm aboutyour system i
licatiSomeftl;nes I desgribe different functions that do the same thing. One cause of du-
gnes a(tnjg % o ;nctl(;)lg Cl% the decentralized growth of Unix. Different groups, like the
an , sometimes devised different soluti ,
s at AT and Ve : ' nt solutions to the same problem.
plicate functions is normal growth. Wh i
service, such as alarm timers, with a m i i e A nix
Vi , ore flexible version, they d
existing programs, so they rarel ipler intexface. Somet e
: } y remove the older, simpler interf i
mention one solution, sometimes more th ou st ot ool
, an one. As you study Unix i
encounter these various solutions. Studyi i Y P iy the fana
: . ying various approaches can clari
mentz;lldeas and help you adapt to local variations. riy the funda-
o idea;naa;lg,tl pﬁe§ent Unix in the context of actual software projects. Unix is a system
echniques created by people building solutions to real problems. We start

with real problems and see ho i i
w the ideas provide solutions. Uni
you see how the pieces work as a system. - Unix makes serise when

SUMMARY

.
[] A com Vi N -

Computer systems that run several programs for several users at the same time re-

quire a central management pro i i
gram. The Unix kernel is a progra
m th
programs and controls access to resources. proe a sehedules

User programs ask the kernel for access to resources.

Some Unix programs consist of separate programs that share or exchange data

g

