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ABSTRACT

Odometry is the most widely used method for determining the momentary position of a mobile
robot. In most practical applications odometry provides easily accessible real-time positioning in-
formation in-between periodic absolute position measurements. The frequency at which the
(usually costly and/or time-consuming) absolute measurements must be performed depends to a
large degree on the accuracy of the odometry system.

This paper introduces practical methods for measuring and reducing odometry errors that are
caused by the two dominant error sources in differential-drive mobile robots: (a) uncertainty
about the effective wheelbase and (b) unequal wheel diameters. These errors stay almost constant
over prolonged periods of time. Performing an occasional calibration as proposed here will in-
crease the robot's odometric accuracy and reduce operation cost because an accurate mobile ro-
bot requires fewer absolute positioning updates. Many  manufacturers or end-users calibrate their
robots, usually in a time-consuming and non-systematic trial and error approach. By contrast, the
method described in this paper is systematic, provides near-optimal results, and it can be per-
formed easily and without complicated equipment.

Experimental results are presented that show a consistent improvement of at least one order of
magnitude in odometric accuracy (with respect to systematic errors) for a mobile robot calibrated
with our method.

Some parts of the material in this paper were presented at the 1995 International Conference on Intelli-
gent Robots and Systems (IROS '95), Pittsburgh, Pennsylvania, August 5-9, 1995; some other parts were
presented at the 1995 SPIE Conference on Mobile Robots, Philadelphia, October 22-26, 1995.
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1. INTRODUCTION

In most mobile robot applications two basic position-estimation methods are employed to-
gether: absolute and relative positioning [Borenstein and Koren, 1987; Hollingum, 1991; Byrne et
al., 1992; Chenavier and Crowley, 1992; Evans, 1994]. Relative positioning is usually based on
odometry (i.e., monitoring the wheel revolutions to compute the offset from a known starting po-
sition). Odometry is simple, inexpensive, and easy to accomplish in real-time. The disadvantage of
odometry is its unbounded accumulation of errors. A very comprehensive survey on mobile robot
positioning methods is given in [Borenstein et al., 1996].

1.1 Absolute Positioning Methods

Absolute positioning methods usually rely on (a) navigation beacons, (b) active or passive
landmarks, (c) map matching, or (d) satellite-based navigation signals. Each of these absolute po-
sitioning approaches can be implemented by a variety of methods and sensors. Yet, none of the
currently existing systems is particularly elegant. Navigation beacons and landmarks usually re-
quire costly installations and maintenance, while map-matching methods are usually slower than
odometry and the current techniques are not sufficiently robust yet to allow general commercial
applications. With any one of these measurements it is necessary that the work environment either
be prepared or be known and mapped with great precision. Satellite-based navigation (GPS) can
be used only outdoors and has poor accuracy, on the order of 10-30 meters [Byrne, 1993]. Radio
frequency-based systems are very expensive and are susceptible to reflections from metal objects
[Byrne et al., 1992].

1.2 Inertial and Magnetic Positioning Methods

Another approach to the position determination of mobile robots is based on inertial navigation
with gyros and/or accelerometers. Our own experimental results with this approach, as well as the
results published by Barshan and Durrant-Whyte [1993, 1994], indicate that this approach is not
advantageous. Accelerometer data must be integrated twice to yield position, thereby making
these sensors exceedingly sensitive to drift. Another problem is that accelerations under typical
operating conditions can be very small, on the order of 0.01 g. Yet, fluctuation of this magnitude
already occur if the sensor tilts relative to a perfectly horizontal position by only 0.5o, for example
when the vehicle drives over uneven floors. Gyros can be more accurate (and costly) but they
provide information only on the rate of rotation of a vehicle, so their data must be integrated
once. This problem does not exist with electronic compasses that measure the orientation of the
robot relative to the earth's magnetic field. However, electronic compasses are not recommended
for indoor applications, because of the large distortions of the earth's magnetic field near power
lines or steel structures [Byrne et al., 1992].
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1.3 The Importance of Odometry

Improved odometry can dramatically reduce the cost for installations of mobile robot systems
because it simplifies the fundamental problem of position determination. However, little research
is directly aimed at improving the odometric accuracy of mobile robots. We attribute this obser-
vation to the fact that a large portion of research in mobile robotics is being done by the Artificial
Intelligence (AI) community. AI researchers are traditionally concerned with the higher-level as-
pects of robotics. For this reason, AI researchers appear to focus on methods of feature extraction
and map matching [Skewis et al., 1991; Kortenkamp et al. 1992; Rencken, 1994]. These research
issues are of great importance for the future development of mobile robots, but at this time they
are too slow to replace odometry altogether. Even Cox [1991], a proponent of map-matching,
says about the virtues of odometric accuracy:

“There also appears to be a self sustaining property to this configuration [map-matching com-
bined with odometry]: Accurate knowledge of position allows for fast robust matching, which leads to
accurate knowledge of position.”

The well known disadvantage of odometry is that it is inaccurate with an unbounded accumula-
tion of errors. Typical odometry errors will become so large that the robot's internal position es-
timate is totally wrong after as little as 10 m of travel [Gourley and Trivedi, 1994]. This paper
helps reduce such problems as it introduces a systematic calibration method designed for the re-
duction of  odometry errors.

2. PROPERTIES OF ODOMETRY ERRORS

Figure 1 shows a typical differential drive mobile robot, the LabMate platform manufactured
by [TRC]. In this design incremental encoders are mounted onto the two drive motors to count
the wheel revolutions. Using simple geometric equations, it is straight-forward to compute the
momentary position of the vehicle relative to a known starting position. This computation is called
odometry. Odometry computes the robot's relative horizontal displacement and change in orienta-
tion as a function of the incremental horizontal displacement of the drive wheels. The latter is
found from incremental wheel encoders as follows:

Suppose that at sampling interval I the left and right wheel encoders show a pulse increment of
NL and NR, respectively. Suppose further that

cm = BDn/nCe (2.1)

where

cm - Conversion factor that translates encoder pulses into linear wheel displacement.

Dn - Nominal wheel diameter (in mm).
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Ce - Encoder resolution (in pulses per revolution).

n - Gear ratio of the reduction gear between the motor (where the encoder is attached) and
the drive wheel.

One can then compute the incremental travel distance for the left and right wheel, )UL,i  and
)UR,i  according to

)UL/R, i = cm NL/R, i (2.2)

We omit here the detailed development of the well known odometry equations for differential
drive vehicles. These equations can be found in [Borenstein et al., 1996] or [Crowley and Reignier
1992].

Odometry is based on simple equations that are easily implemented and that utilize data from
inexpensive incremental wheel encoders. However, odometry is based on the assumption that
wheel revolutions can be translated into linear displacement relative to the floor. This assumption
is only of limited validity. One extreme example is wheel slippage: If one wheel was to slip on,
say, an oil spill, then the associated encoder would register wheel revolutions even though these
revolutions would not correspond to a linear displacement of the wheel.

Besides this extreme case of total slippage, there are several other, more subtle reasons for in-
accuracies in the translation of wheel encoder readings into linear motion. All of these error
sources fit into one of two categories: (1) systematic errors and (2) non-systematic errors.

1. Systematic errors
a. Unequal wheel diameters
b. Average of both wheel diameters differs from nominal diameter
c. Misalignment of wheels
d. Uncertainty about the effective wheelbase (due to non-point wheel contact with the floor)
e. Limited encoder resolution
f. Limited encoder sampling rate

2. Non-systematic errors
a. Travel over uneven floors
b. Travel over unexpected objects on the floor
c. Wheel-slippage due to:
! slippery floors
! over-acceleration
! fast turning (skidding)
! external forces (interaction with external bod-

ies)

Bumper

Drive
motor Drive

motor

Drive
wheels Bumper

deadre05.ds4, .wmf, 10/19/94

Castors

Centerpoint C

Incremental
encoders

Figure 1: A typical differential-drive mobile
robot (bottom view).
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! internal forces (e.g., castor wheels)
! non-point wheel contact with the floor

Systematic errors are particularly grave, because they accumulate constantly. On most smooth
indoor surfaces systematic errors contribute much more to odometry errors than non-systematic
errors. However, on rough surfaces with significant irregularities, non-systematic errors may be
dominant.

Additional odometry errors can be introduced through the odometry equations themselves,
since they approximate arbitrary motion as a series of short straight line segments.  The precision
of this approximation depends on the sampling frequency with respect to the speed of the robot.
In our practical experience, however, this error is negligible when working with typical sampling
times of Ts < 10 ms and typical speeds of V < 1 m/s.

Finally, we note that in order to reduce overall odometry errors, orientation errors are the main
source of concern because once they are incurred they grow without bound into lateral position
errors [Crowley, 1989; Feng et al.,  1993].

2.1 Non-Systematic Odometry Errors

Non systematic odometry errors are those errors that are caused by interaction of the robot
with  unpredictable features of the environment. For example, irregularities of the floor surface,
such as bumps, cracks, or debris, will cause a wheel to rotate more than predicted by Eq. (2.2),
because the affected wheel travels up or down the irregularity, in addition to the C expected C
horizontal amount of travel. Non-systematic errors are a great problem for actual applications,
because it is impossible to predict  an upper bound for the odometry error. Recent work at the
University of Michigan [Borenstein, 1994; 1995a; 1995b] showed that by using redundant en-
coder data, non-systematic errors can be reduced  by orders of magnitude. However, in the pres-
ent paper we will  concentrate on the treatment of systematic errors.

2.2 Systematic Odometry Errors

Systematic errors are vehicle-specific and don't usually change during a run (although different
load distributions can change some systematic errors quantitatively). Thus, odometry can be im-
proved generally (and in our experience, significantly) by measuring the individual contribution of
the most dominant errors sources, and then counter-acting their effect in software.

Systematic errors are usually caused by imperfections in the design and mechanical implemen-
tation of a mobile robot. In the course of over 12 years of experimental work with differential-
drive mobile robots we observed that the two most notorious systematic error sources are une-
qual wheel diameters and the uncertainty about the effective wheelbase. This opinion is reflected
in the literature, where these two error sources are named most often [Borenstein and Koren,
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1985; 1987; Crowley, 1989; Komoriya and Oyama, 1994; Everett, 1995].

a)  Unequal wheel diameters. Most mobile robots use rubber tires to improve traction. These tires
are difficult to manufacture to exactly the same diameter. Furthermore, rubber tires compress
differently under asymmetric load distribution. Either one of these effects can cause substantial
odometry errors. We will denote this error as Ed and we define it as

 Ed = DR/DL (2.3)

where DR and DL are the actual wheel diameters. The nominal ratio between the wheel di-
ameters is of course 1.00.

b) Uncertainty about the wheelbase. The wheelbase is defined as the distance between the contact
points of the two drive wheels of a differential-drive robot and the floor. The wheelbase must
be known in order to compute the number of differential encoder pulses that correspond to a
certain amount of rotation of the vehicle. Uncertainty in the effective wheelbase is caused by
the fact that rubber tires contact the floor not in one point, but rather in a contact area. The re-
sulting uncertainty about the effective wheelbase can be on the order of 1% in some commer-
cially available robots. We will denote this error as Eb and we define it as

Eb = bactual/bnominal (2.4)

where b is the wheelbase of the vehicle.

It is important to note that Eb has an effect only when turning, while Ed affects only straight
line motion. Ed and Eb are dimensionless values, expressed as fractions of the nominal value.

At this time we have defined only the wheelbase error, Eb, and the ratio between actual wheel
diameters, Ed, as relevant factors. However, if the average of the two actual wheel diameters, de-
noted Da, differs from the nominal wheel diameter, denoted Dn, then the vehicle will experience an
additional odometry error, which we call the scaling error Es. Es affects straight-line motion and,
as we will show in Section 2.3, pure turning motion. However, even though Es can be a signifi-
cant error, Es is exceedingly easy to measure with just an ordinary tape measure. For this reason
we will assume that Es has been measured and corrected in software before any of the procedures
described in this paper is performed.

2.3 The Effect of Unequal Wheel-diameters During Turning

In this Section we investigate how unequal wheel diameters affect on-the-spot turning of a
differential-drive mobile robot. The results of this section are of fundamental importance for the
odometry error measuring and correction methods discussed later.

Figure 2 shows the two drive wheels of the robot before and after a nominal turn Jn.  Since on-
the-spot-turning requires that both wheels rotate at the same speed, we can assume that the an-
gular velocity of both wheels is equal.  However, due to the unequal wheel diameters the actual
linear velocities of the wheels are proportional to the actual wheel diameters DR and DL. Thus, the
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instantaneous center of rotation (ICR) 'O' can be found easily as shown in Fig. 2. Note that 'O'
does not coincide with the vehicle centerpoint C. At the completion of this turn point C will have
moved to C'. The "on-the-spot" turn is therefore accompanied by a lateral displacement. How-
ever, in the square path experiment with four "on-the-spot" turns the four resulting lateral dis-
placements balance and can be ignored.

We now wish to derive a relation between the actual wheel diameters DL and DR, and the ac-
tual angle of rotation J. From Fig. 2 we obtain

r
r

D
D

R

L

R

L

= (2.5)

where rR/L is the distance from the ICR 'O' to the right or left wheel.

Next, rewriting Eq. (2.5)  yields

rR =  (DR/DL) rL (2.6)

Under normal driving conditions the ICR is always on the drive axis (or along its imaginary
extension beyond the wheels), so that

rR + rL = b (2.7)

Substituting Eq. (2.6) into Eq.  (2.7) and solving for rL yields

 r D
D D

bL
L

R L

=
+

  (2.8)

Let us denote the nominal curvelinear displacement of the left wheel as UL,n. Let us further de-
note the  nominal diameter of the left wheel as
DL,n and the number of rotations of the left wheel
as NL.

Then

 UL,n = B DL,n NL (2.9) (2.9)

Under nominal conditions, the left wheel
would be turning around C with an angle Jn

τ
π

= =
U
b

N D
b

L n L L n, ,

/ 2
2

(2.10)

Now let us suppose that the right wheel was
smaller than the left one.  The rotation is now
about point C' in Fig. 2 and the angle corre-
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Figure 2: When turning through a nominal angle 
n, it is not the "unequal wheel diameter" error, but
rather the "average actual wheel diameter" error,
that affects the amount of turning.
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sponding to its curvelinear displacement is:

τ π= =U
r

N D
r

L

L

L L

L

(2.11)

Solving Eq. (2.10) for NL and substituting in Eq. (2.11) yields

τ τ= n L

L L n

bD
r D2 ,

(2.12)

Substituting Eq. (2.8) in Eq. (2.12) yields:

τ τ= +
n

R L

L n

D D
D2 ,

(2.13)

To interpret this result more easily, we define the average actual wheel diameter

D D D
avrg

R L= +
2

(2.14)

and we rewrite Eq. (2.14) as

D Davrg L n

nτ τ
= , (2.15)

Equation (2.15) can be expressed in words as “The average actual wheel diameter relates to
the actual angle of turning as the nominal wheel diameter relates to the nominal angle of turning.”

Three important conclusions can be drawn from Eq. (2.15):

1. Unequal wheel diameters do not cause an orientation error during turning.

2. Whatever Ed is,  J = Jn if (DR + DL)/2 = Dn. In other words, the orientation error depends on
the average actual wheel diameter Davrg = (DL+DR)/2.  If Davrg > Dn, then the vehicle will turn
more than the nominal amount. If  Davrg < Dn, then the vehicle will turn less.

3. Ed has a minor effect on the x and y position of centerpoint C, because the actual center of ro-
tation, C', does not coincide with C, as shown in Fig. 2.

3. MEASUREMENT OF SYSTEMATIC ODOMETRY ERRORS

In this section we introduce methods for isolating and measuring systematic odometry errors.
We discuss two test sequences (benchmark tests), which allow the experimenter to draw conclu-
sions about the overall odometric accuracy of the robot, and to compare the performance of dif-
ferent mobile robots from different manufacturers.

The first benchmark test is called the "uni-directional square path" test. This test, or some
variations of this test, have been mentioned in the literature [Cybermotion, 1988; Komoriya and
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Oyama, 1994], but we will show that this test is unsuitable for differential drive vehicles. To over-
come the shortcomings of the uni-directional square path test, we will later introduce in Sec-
tion 3.2 a benchmark test called the "bi-directional square path test."

3.1 The uni-directional square path as a benchmark test

Figure 3a shows a 4H4 m uni-directional square path. The robot starts out at a position x0, y0,
20, which is labeled START. The starting area should be located near the corner of two
perpendicular walls. The walls serve as a fixed reference before and after the run: measuring the
distance between three specific points on the robot and the walls allows accurate determination of
the robot's absolute position and orientation.

The robot is programmed to traverse the four legs of the square path. The path will return the
vehicle to the starting area, but, because of odometry and controller errors, not precisely to the
starting  position. Since this test aims at determining odometry errors and not controller errors,
the vehicle does not need to be programmed to return to its starting position precisely C returning
approximately to the starting area is sufficient. Upon completion of the square path, the
experimenter again measures the absolute position of the vehicle, using the fixed walls as a
reference. These absolute measurements are then compared to the position and orientation of the
vehicle as computed from odometry data. The result is a set of return position errors caused by
odometry and denoted ,x, ,y, and ,2.

,x = xabs - xcalc

,y = yabs - ycalc (3.1)

,2 = 2abs - 2calc

where
 ,x, ,y,  ,2 C Position and orientation errors due to odometry.
 xabs, yabs, 2abs C Absolute position and orientation of the robot.
xcalc, ycalc, 2calc C  Position and orientation of the robot as computed from odometry.

The path shown in Fig. 3a comprises of four straight line segments and four pure rotations
about the robot's centerpoint, at the corners of the square. The robot's end position shown in Fig.
3a visualizes the dead-reckoning error.

While analyzing the results of this experiment, the experimenter may draw two different con-
clusions: (1) The odometry error is the result of unequal wheel diameters, Ed, as shown by the
slightly curved trajectory in Fig. 3b (dotted line); or, (2) the odometry error is the result of un-
certainty about the wheelbase, Eb. In the example of  Fig. 3b, Eb caused the robot to turn 87o in-
stead of the desired 90o (dashed trajectory in Fig. 3b).
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As one can see in Fig. 3b, either one of
these two cases could have yielded ap-
proximately the same position error. The
fact that two different error-mechanisms
can result in the same overall error may
lead an experimenter toward a serious
mistake: correcting only one of the two
error sources in software. This mistake is
so serious because it will yield apparently
"excellent" results, as shown in the exam-
ple in Fig. 4. In this example, we assume
that the experimenter began "improving"
performance by adjusting the wheelbase b
in the control software. The experimenter
needs only to increase the value of b to
make the robot turn more in each nominal
 90o turn. In doing so, the experimenter
will soon have adjusted b to what appears
to be the "ideal" value, namely, the one
that will cause the robot to turn 93o,
thereby effectively compensating for the 3o

orientation error introduced by each
slightly curved (but nominally straight) leg
of the square path. Obviously, the thus
"calibrated" robot would incur huge
odometry errors, even though the uni-
directional calibration  procedure showed
that the robot was calibrated well.

We should note that another popular
test path, the "figure-8" path [Tsumura  et
al., 1981; Borenstein and Koren, 1985,
Cox 1991] can be shown to have the same
shortcomings as the uni-directional square
path.

3.2 The bi-directional square
path experiment: "UMBmark"

The detailed example of the preceding section illustrates that the uni-directional square path
experiment is unsuitable for testing odometry performance, because it can easily conceal two
mutually compensating odometry errors. To overcome this problem, we introduce the Bi-

Start

End

Robot

Forward
Robot

Pre-programmed
square path, 4m x 4m.

Forward

Pre-programmed
square path, 4m x 4m.

Reference wall

Reference wall

\designer\doe94\deadre20.ds4, .wmf,  07/26/94

Curved instead of straight path
(due to unequal wheel diameters).
In the example here, this causes 
a 3o orientation error

87o turn instead of 90 o turn 
(due to uncertainty about 
the effective wheelbase)

Figure 3: The unidirectional square path experiment.
a. The nominal path.
b.  Either one of the two significant errors Eb or Ed can

cause the same final position error.
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directional Square Path experiment,
called University of Michigan Bench-
mark (UMBmark). UMBmark requires
that the square path experiment be
performed in both clockwise and
counter-clockwise direction. Figure 5
shows that the concealed dual-error
from the example in Fig. 4 becomes
clearly visible when the square path is
performed in the opposite direction.
This is so because the two dominant
systematic errors, which may compen-
sate for each other when run in only
one direction, add up to each other and
increase the overall error when run in
the opposite direction.

The result of the Bi-directional
Square Path experiment might look
similar to the one shown in Fig. 6,
which shows actual results with an off-
the-shelf LabMate robot carrying an
evenly distributed load. In this experi-
ment the robot was programmed to
follow a 4H4 m square path, starting at (0,0). The stopping positions for five runs each in clock-
wise (cw) and counter-clockwise (ccw) directions are shown in Fig. 6. Note that Fig. 6 is an en-
larged view of the target area. The results of Fig. 6 can be interpreted as follows:

a. The stopping positions after cw and ccw runs are clustered in two distinct areas.

b.  The distribution within the cw and ccw clusters are the result of non-systematic errors, as
mentioned in Section 2.1. However, Fig. 6 shows that in an uncalibrated vehicle traveling
over a reasonably smooth concrete floor, the contribution of systematic errors to the total
odometry error is notably larger1 than the contribution of non-systematic errors.

After conducting the UMBmark experiment, one may wish to derive a single numeric value
that expresses the odometric accuracy (with respect to systematic errors) of the tested vehicle. In
order to minimize the effect of non-systematic errors, we suggest to consider the center of gravity
of each cluster as representative for the odometry errors in cw and ccw directions. The coordi-
nates of the two centers of gravity are computed from the results of Eq. (3.1) as

                                               
1In informal tests with two other LabMate robots at our lab we have observed (but not methodically

noted) even greater systematic odometry errors than those in Fig. 6. These may be due to less balanced
load-distributions in those earlier tests.

\designer\doe94\deadre30.ds4, deadre31.wmf,  06/21/95
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 (due to unequal wheel diameters). 
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Figure 4: The effect of the two dominant systematic
odometry errors Eb and Ed. Note how both errors may cancel
each other out when the test is performed in only one
direction.
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Finally, we define the larger value among rc.g., cw and rc.g., ccw as the measure of odometric accu-
racy for systematic errors

Emax,syst = max(rc.g.,cw ; rc.g.,ccw) (3.4)

The reason for not using the average of the two centers of gravity rc.g.,cw and rc.g.,ccw is that for
practical applications, one needs to worry about the largest possible odometry error. Note that
the final orientation error ,2 is not considered explicitly in the expression for Emax,syst. This is so
because all systematic orientation errors are implied by the final position errors. In other words,
since the square path has fixed-length sides, systematic orientation errors translate directly into
position errors (as will be shown by Eq. (4.8) and (4.16) in Section 4).

3.3 Summary of the UMBmark Procedure

In summary, the UMBmark is defined as the following procedure:

c.g.,cw/ ccw
i=1

n

i,cw / ccw

c.g.,cw/ ccw
i=1

n

i,cw/ ccw

x = 1
n

x

 

y = 1
n

y

∑

∑

ε

ε

(3.2)

where n = 5 is the number of runs in each direction.

The absolute offsets of the two centers of gravity from the origin are denoted rc.g., cw and rc.g.,

ccw (see Fig. 6) and are given by

c.g.,cw c.g.,cw
2

c.g.,cw
2

c.g.,ccw c.g.,ccw
2

c.g.,ccw
2

r = ( x ) +( y )
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Figure 5: Typical results from running UMBmark (a square
path run in both cw and ccw directions) with an uncalibrated
vehicle.
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1. At the beginning of the run, measure the absolute position (and, optionally, orientation) of the
vehicle and initialize the onboard odometric starting position to that position.

2. Run the vehicle through a 4H4 m square path in cw direction, making sure to

< stop after each 4 m straight leg;

< make a total of four 90o-turns on the spot;

< run the vehicle slowly to avoid slippage.

3. Upon return to the starting area, measure the absolute position (and, optionally, orientation) of
the vehicle.

4. Compare the absolute position to the robot's calculated position, based on odometry and using
Eqs. (3.1).

5. Repeat steps 1-4 for four more times (i.e., a total of five runs).

6. Repeat steps 1-5 in ccw direction.

7. Use Eqs. (3.2)  and (3.3) to express the experimental results quantitatively as the measure of
odometric accuracy for systematic errors, Emax,syst.

8. Optionally, use a plot similar to Fig. 6 to represent ,xi and ,yi graphically.

4. CORRECTION OF SYSTEMATIC ODOMETRY ERRORS

One interesting aspect of the error distribution pattern in the UMBmark experiment (see Fig.  
6, above) is the fact that one can analytically derive correction factors from the experimental re-
sults. Before we do so, let us first define two new error characteristics that are meaningful only in
the context of the Bi-directional Square Path experiment. These characteristics, called Type A and
Type B, represent odometry errors in orientation. Type A is defined as an orientation error that
reduces (or increases) the total amount of rotation of the robot during the square path experi-
ment in both cw and ccw direction. By contrast, Type B is defined as an orientation error that
reduces (or increases) the total amount of rotation of the robot during the square path experi-
ment in one direction, but increases (or reduces) the amount of rotation when going in the other
direction. As examples consider Figures 7 and 8, below.

Figure 7 shows a case where the robot turns four times for a nominal amount of 90o per turn.
However, because the actual wheelbase of the vehicle was larger than the nominal value, the vehi-
cle actually turned only 85o in each corner of the square path. In the example of Fig. 7 the robot
will actually turn only 2total = 4H85o = 340o, instead of the desired 2nominal = 360o. We observe that
in both the cw and the ccw experiment the robot ends up turning less than the desired amount ,
i.e., |2total,cw| < |2nominal| and |2total, ccw| < |2nominal|. Thus, the orientation error is of Type A.

In Fig. 8 the trajectory of a robot with unequal wheel diameters is shown. This error expresses
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itself in a curved path that adds to the overall orientation at the end of the run in ccw direction,
but it reduces the overall rotation in the ccw direction, i.e., |2total, ccw| > |2nominal| but |2total, cw| <
|2nominal|. Thus, the orientation error in Fig. 8 is of Type B.

In an actual run Type A and Type B errors will of course occur together. The problem is
therefore  how to distinguish and compute Type A and Type B errors from the measured final po-
sition errors of the robot in the Bi-directional Square Path experiment. We approach this problem
by defining the following simplified model for systematic odometry errors:

Assumptions:

1. Ed and Eb are the dominant sources of systematic odometry errors.

2. An incorrect wheelbase (Eb) causes errors only during turning but not during straight line  mo-
tion.

3. Unequal wheel diameters (Ed) cause errors only during straight line motion but not during
turning.

4. Eb causes only Type A errors but not Type B errors.

5. Ed causes only Type B errors but not Type A errors.

Consequences:

1. Because of assumption #1, eliminating Eb eliminates the system's Type A error almost com-
pletely.

2. Because of assumption #1, eliminating Ed eliminates the system's Type B error almost com-
pletely.

Because of the close association between Eb and Type A errors and between Ed and Type B er-
rors (according to assumptions #6 and #7) we will use the terms Eb and Type A, as well as the
terms Ed and Type B, interchangeably.

4.1 Analysis of Type A and Type B Errors

Having defined a model, we will now analyze the characteristics of the UMBmark procedure
with regard to that model. To simplify the mathematical treatment, we will make extensive use of
approximations for small angles: Lsin(. L( and Lcos(.L. For simplicity, we assume that the
starting position (x0, y0) of the robot is at (0,0). At first we will analyze and examine the contribu-
tion of Type A and Type B errors separately. Then, we will superimpose both errors to represent
the actual conditions.

Figure 7 shows the contribution of Type A errors. We recall that according to assumptions #1
and #4 Type A errors are caused mostly by Eb. We also recall that Type A errors cause too much
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or too little turning at the corners of the
square path. The (unknown) amount of erro-
neous rotation in each nominal 90o turn is
denoted as ". Due to the above approxima-
tions, " is measured in [rad].

a.  For Type A errors in ccw direction:

x1 = x0 + L (4.1a)

y1 = y0 (4.1b)

x2 = x1 + Lsin" . L +  L" (4.2a)

y2 = y1 + Lcos" . L (4.2b)

x3 = x2 - Lcos2" . L" (4.3a)

y3 = y2 + Lsin2" . L + 2L" (4.3b)

x4 = x3 - Lsin3"  . -2L" (4.4a)

y4 = y3 - Lcos3" . 2L" (4.4b)

b. For Type A errors in cw direction:

x1 = x0 + L (4.5a)

y1 = y0 (4.5b)

x2 = x1 + Lsin" . L +  L" (4.6a)

y2 = y1 - Lcos" .-L (4.6b)

x3 = x2 - Lcos2" . L" (4.7a)

y3 = y2 - Lsin2" .-L - 2L" (4.7b)

x4 = x3 - Lsin3"  . -2L" (4.8a)

y4 = y3 + Lcos3" .-2L" (4.8b)

Figure 8 shows the contribution of Type
B errors. We recall that according to our as-
sumptions #1 and #5 Type B errors are
caused mostly by the ratio between wheel diameters, Ed. We also recall that Type B errors cause a
slightly curved path instead of a straight one during the four straight legs of the square path. Be-
cause of the curved motion, the robot will have gained an incremental orientation error, denoted $,
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at the end of each straight leg. Note that the auxiliary line c'1, which connects the corner points of
the actual path, has a slope of $/2 because it is parallel to the tangent to the midpoint of arc c1.
With respect to the unknown parameter $ (in [rad]), we obtain:

a. For Type B errors in ccw direction:

x1 = x0 + Lcos($/2) .L (4.9a)

y1 = y0 + Lsin($/2) . L$/2 (4.9b)

x2 = x1 - Lsin(3$/2). L - L$/2 (4.10a)

y2 = y1 + Lcos(3$/2). L$/2 + L (4.10b)

x3 = x2 - Lcos(5$/2) . -3L$/2 (4.11a)

y3 = y2 - Lsin(5$/2). -2L$ + L (4.11b)

x4 = x3 + Lsin(7$/2). 2L$ (4.12a)

y4 = y3 - Lcos(7$/2) .  -2L$
(4.12b)

b. For Type B errors in cw direction:

x1 = x0 + Lcos($/2) . L (4.13a)

y1 = y0 + Lsin($/2) . L$/2 (4.13b)

x2 = x1 + Lsin(3$/2) . L +  3L$/2 (4.14a)

y2 = y1 - Lcos(3$/2)  . L$/2 - L
(4.14b)

x3 = x2 - Lcos(5$/2) . 3L$/2
(4.15a)

y3 = y2 - Lsin(5$/2). -L(2$ + 1) (4.15b)

x4 = x3 - Lsin(7$/2). -2L$ (4.16a)

y4 = y3 + Lcos(7$/2) . -2L$ (4.16b)

Superimposing Type A and Type B errors
for the cw experiment in x-direction yields

xcw:

-2L" - 2L$ = -2L(" + $) = xc.g.,cw (4.17)
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xccw:

-2L" + 2L$ = -2L(" - $) = xc.g.,ccw (4.18)

Subtracting  (4.18) from (4.17) yields

-4L$ =  xc.g.,cw - xc.g.,ccw (4.19)

or

β
π

=
−

−
( ). ., . .,x x

L
c g cw c g ccw

4
180o

(4.20a)

for $ in degrees.

Comparing terms in y-direction yields a
similar result

β
π

=
+

−
( ). ., . .,y y

L
c g cw c g ccw

4
180o

(4.20b)

Using simple geometric relations, the radius of curvature R of the curved path of Fig. 8 can be
found from triangle ABM in Fig. 9.

R
L= /

sin( / )
2

2β
(4.21)

Once radius R is computed, it is easy to determine the ratio between the two wheel diameters
that caused the robot to travel on a curved, instead of a straight path (see Fig. 10):
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E D
D

R b
R bd

R

L

= +
−

/
/

2
2

(4.22)

The ratio of Eq. (4.22) can be used to correct Type B errors as will be explained in Section 4.2.

Similarly, " can be found by adding Eq. (4.17) and Eq. (4.18)

-4L" = xc.g.,cw + xc.g.,ccw (4.23)

or

α
π

=
+

−
( ). ., . .,x x

L
c g cw c g ccw

4
180o

(4.24a)

solves for " in [degrees].

Again, comparing terms in y-direction yields a similar result for "

α
π

=
−

−
( ). ., . .,y y

L
c g cw c g ccw

4
180o

(4.24b)

We can now compute the wheelbase error Eb. Since the wheelbase b is inversely proportional to
the actual amount of rotation (as shown by the well known odometry equations [Borenstein et al.,
1996]), we can use the proportion:

b bactual nominal

90 90o o=
− α

(4.25)

so that

Drive
wheels

deadre10.ds4, deadre11.wmf, 07/22/94

R
b

DL DR

Figure 10:  Unequal wheel diameters cause the robot to travel on a curved path of radius R (curvature is
exaggerated for better illustration).
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b bactual nominal=
−

90
90

o

o α
(4.26)

where, per odometry equations given in [Borenstein et al., 1996]

Eb =
−

90
90

o

o α
(4.27)

4.2 Compensation for systematic odometry errors

Once we know the quantitative values of Ed and Eb, it is easy to compensate for these errors in
software. The correction for the wheelbase error Eb is trivial: the wheelbase b is redefined in soft-
ware according to Eq. (4.26). The correction for the unequal wheel diameters, Ed, is slightly more
complex: After performing the UMBmark procedure, we know the actual wheel diameter ratio
Ed = DR/DL from Eq. (4.22). However, when applying a compensation factor, we must make sure
not to change the average wheel diameter Da, since one would then have to recalibrate that pa-
rameter. Da will remain unchanged if we consider it as a constraint

Da = (DR + DL)/2 (4.28)

Solving Eqs. (4.22) and (4.28) as a set of two linear equations with two unknowns, DR and DL,
yields

D
E

DL
d

a=
+

2
1

(4.29)

and

D
E

DR
d

a=
+

2
1 1( / )

(4.30)

We can now define the two correction factors

c
EL

d

=
+

2
1

(4.31)

and

c
ER

d

=
+

2
1 1( / )

(4.32)

which can be implemented in the odometry algorithm by rewriting Eq. (2.2) as
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)UL/R, i = cL/R cm NL/R, i (4.33)

We have thus corrected both dominant systematic errors.

5. EXPERIMENTAL RESULTS

In this section we describe experiments that validate the above described method for correcting
Type A and Type B errors by changing the effective wheelbase b and the effective wheel-diameter
ratio DR/DL. The experiments were performed with a LabMate robot equipped with an onboard
AMPRO 486/50 MHz PC compatible single-board computer.

The robot was programmed for both a cw and a ccw 4H4 m square path. To avoid slippage, the
robot was traveling slowly, at a speed of 0.2 m/s during the straight legs of the square path. At the
end of each leg the robot came to a complete stop and rotated on-the-spot through 90o. This means
that the robot made a fourth 90o turn after returning to its starting area. The linear speed of the two
drive wheels during turning was approximately 0.2 m/s and -0.2 m/s. The robot started and stopped
near an L-shaped corner and used a so-called Asonar calibrator@ [Borenstein 1993] to determine its
position and orientation relative to the L-shaped corner. We will refer to this as the absolute posi-
tion. The sonar calibrator comprises three standard POLAROID ultrasonic sensors.  Two sensors
were facing the long side of the L-shaped corner, the third sensor faced the short side. The ultra-
sonic sensor system allowed measurement of the absolute position of the vehicle to within "2 mil-
limeters in the x and y directions, and to about "0.4o in orientation.

At the beginning of each run a sonar measurement was taken to determine the starting position
of the vehicle. The robot then traveled through the programmed path and returned to the L-shaped
corner, where the perceived position (i.e., the position the vehicle "thought" it had, based on
odometry) was recorded. Then, a second sonar measurement was taken to determine the absolute
position. The difference between the absolute position and the perceived position is the return po-
sition error ,, as  defined by Eqs. (3.1), above.

The uncalibrated robot (i.e., DR/DL = 1.0000 and b = bnominal = 340.00 mm) made five cw trips
and five ccw trips. As expected, the return position errors were clearly grouped in a cw cluster and
a ccw cluster, as was shown in Fig. 6. For each of the two clusters the x and y components of the
respective centers of gravity were computed according to Eq. (3.2). The resulting xc.g. and yc.g. were
used to compute Ed  according to Eqs. (4.20) - (4.22). Then, correction factors cL and cR were
computed

according to Eqs. (4.31) and (4.32) and introduced into the odometry program. Similarly the
corrected wheelbase bnew was computed according to Eqs. (4.24) - (4.26)2.

                                               
2 Hoping to reduce the effect of non-systematic errors further, we actually computed Ed and Eb in two

Hoping to reduce the effect of non-systematic errors further, we actually computed Ed and Eb in two ways:
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At this time the calibration procedure was complete. In order to verify the results we ran the
UMBmark experiment for a second time, this time with the correction factors in place. Figure 11
shows the results of both the un-
calibrated runs and the runs with
the calibrated vehicle.

As explained in Section 3, Eqs.
(3.2)  and (3.3) were used to ex-
press the experimental results
quantitatively as the measure of
odometric accuracy for systematic
errors, Emax,syst.  In the example of
Fig. 11,  Emax,syst was 317 mm before
compensation and 21 mm after
compensation. This represents a 15-
fold improvement.

In order to assure that the ex-
periment shown in Fig. 11 was not
an isolated case, we performed
another seven carefully monitored
experiments. Table I lists the results
from all eight experiments. We
emphasize that Table I lists all ex-
periments we ever made, it is not a
selection of the best runs. We fur-
ther emphasize that in each experi-
ment we used all runs, without
eliminating "outliers" (with the
exception of  four or five runs where the errors reported by the sonar calibrator were absurdly
large, presumably due to a malfunctioning of the sonar calibrator).

The seemingly large fluctuations in improvement, especially among experiments #3, #4, and #5
(which all used the same correction factors) are due to the fact that the centers of gravity (c.g.s) for
the runs after calibration are all very close to the origin (as seen in Fig. 11). Thus, the arbitrary
spread of return position errors caused by non-systematic error sources has greater impact on the
c.g.s. For example, the c.g. of Experiment 4 is only 17 mm (5/8") closer to the origin than the c.g.
of Experiment #3 C a difference that is attributed to the arbitrary spread of non-systematic errors.

                                                                                                                                                      
(1) based on the values for xc.g., according to Eqs. (4.20a) and (4.24a); and (2) based on the values for yc.g.,
according to Eqs. (4.20b) and (4.24b). We then averaged Ed,x and Ed,y, as well as  Eb,x and Eb,y. This meas-
ure may not be necessary in general, because the respective correction values (based on xc.g. or yc.g.) dif-
fered by less than 1% in all cases.
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In principle, it is possible to achieve even better results by performing the compensation proce-
dure for a second time, "on top of" the first compensation. This is so because a compensated robot
can be treated as though it was a "new" uncompensated robot, but with different initial parameters.
Using the standard deviation (F) of the 5 runs in each direction it is easy to decide when a second
compensation run will be beneficial. The standard deviation of the return position errors in the
4H4 m Bi-directional Square Path Experiment was about 25 mm. The Standard Error of the Mean
(SEM), defined as SEM = F/sqrt(n), was 11.2 mm (n is the number of runs). As a rule-of-thumb
sometimes used in small sample statistics [Walpole and Myers, 1985], one can say that if Emax,syst <
3HSEM it is unlikely (here: 5%) that the result can be improved by a second compensation. We put
this rule-of-thumb to the test in Experiment #7, where Emax,syst = 66 mm was notably worse (the
improvement over the uncompensated run was only 6.4-fold) than in the other experiments. Ap-
plying the above rule-of thumb, it is evident that  66 mm > 3HSEM = 33.6 mm, so that a second
compensation run was indicated. After the second compensation, the vehicle's  error was Emax,syst =
20 mm, i.e., a 21-fold reduction relative to the uncompensated systematic error.

Table I: The Measure of Odometric Accuracy for Systematic Errors, Emax,syst, before and after compensa-
tion.

Experi-
ment #

 Emax,syst before
compensation
[mm]

 Emax,syst after
compensation
[mm]

Improve-
ment

Comment

1 317 21 15-fold Details shown in Fig. 11

2 349 32 11-fold

3 310 31 10-fold These 3 experiments used the same set
of uncalibrated results and identical cor-
rection factors.

4 310 14 22-fold

5 310 26 12-fold

6 403 35 11-fold

7 423 after 1st comp:
66

after 2nd comp:
20

21-fold* In this experiment the diameter of the
right wheel was slightly increased by
winding three loops of masking tape
around the wheel perimeter.

8 232 12 19-fold In this experiment the diameter of the left
wheel was slightly increased by winding
five loops of masking tape around the left
wheel perimeter.

*) Two compensation runs were performed. See explanation in main text.
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6. CONCLUSIONS

This paper deals with the measurement and correction of systematic odometry errors in differ-
ential-drive mobile robots. The paper investigates specifically the errors due to the wheel diameter
ratio, Ed, and the uncertainty about the wheelbase, Eb.  A third C potentially significant C error is
the scaling error, Es. Es is the ratio between the average of the actual wheel diameters and the
nominal wheel diameter. However, this error is so easy to measure and correct that we have re-
moved it from consideration.

The focus on Ed and Eb is based on our error model, which assumes that systematic orientation
errors are either of Type A or Type B. Type A errors are directly affected by Eb and Type B errors
are directly affected by Ed. Other systematic errors may also affect the overall Type A and Type B
error. However, we do not need to worry about this, because, in principle, both Type A and Type
B errors can be eliminated completely by changing the effective wheelbase and wheel-diameter
ration in software.

Based on this model we define a benchmark test for odometric accuracy in differential-drive ro-
bots. This test, called UMBmark, assures that different odometric errors don't compensate for each
other, as may be the case with other odometry tests. The UMBmark procedure yields a single nu-
meric value, Emax,sys, that represents a quantitative measure of a vehicle's systematic odometry er-
rors. This makes UMBmark an effective tool for evaluating the odometry performance of a vehicle
with different parameters and for the comparison of odometry performance between different mo-
bile robots.

Another contribution of this paper is the definition of a systematic procedure for measuring and
correcting Type A and Type B odometry errors. The effectiveness of this procedure and the validity
of its underlying model are supported by the experimental results. The results show that by chang-
ing only the effective wheelbase and the effective wheel-diameter ratio the vehicle's odometric ac-
curacy (with respect to systematic errors only) increased by at least one order of magnitude. This
improvement was consistent when tested repeatedly for the same vehicle and when tested on the
same vehicle but with artificially altered wheelbases and wheel-diameter ratios.

One should note that odometric calibration factors are used by many researchers. However, to
date such factors were usually found by some form of trial-and-error and some intuition on the part
of the experimenter. This type of approach is very time consuming and yields inferior results. By
contrast, the UMBmark procedure offers a systematic approach that yields near-optimal results. 
The strength of the UMBmark calibration procedure lies in the fact that even minute mechanical
inaccuracies, such as  wheel diameters that differ by as little as 0.1% can be isolated and identified.
Yet, a conventional measuring tape is all that is needed to conduct the experiment.

With the help of the sonar calibrator the UMBmark procedure lends itself to be implemented as
an automated self-calibration procedure. U of M is now beginning to develop such an automated
approach. If successful, this method would require only two human interventions: (1) manual
measurement of the scaling error Es (with an ordinary tape measure); and (2) initial placement of
the robot in a n L-shaped corner of the testing site. The robot would then run the fully automated
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self-calibration routine (UMBmark), compute the calibration factors, and insert the calibration
factors into its odometry program. This method should be of interest for all manufacturers of dif-
ferential-drive autonomous vehicles.  Similarly, end-users who are concerned with accurate
odometry would want to run the self-calibration routine periodically to correct for different loads
and tire-wear.

While the present work reduces only systematic odometry errors, we have recently developed
novel odometry methods that can reduce non-systematic odometry errors by two or more orders of
magnitude [Borenstein, 1995a, 1995b]. We are currently planning to combine these two methods in
a specially designed mobile robot platform. If successful, the combined methods will provide sub-
stantially better and more robust odometry for  future generations of mobile robots.
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