
Stamp Applications no. 9 (November ’95):

Exterminating Common Bugs
With Little-Known Stamp Info

Miscellaneous Tips and Techniques, by Scott Edwards

THE STAMP is so easy to use and program that
I sometimes forget what a complex little
computer it is. Fortunately, I have you, the
readers of this column, to remind me. This
month I’ll present an assortment of bug fixes,
explanations, hints, and tips based on questions
and comments I’ve received by e-mail.

Programs without END

In figure 1, an LED is wired so that it lights
when a low (0) appears on pin 0. Suppose you
wrote a program that consisted of just the
following line:

LOW 0 ' Light the LED.

What would happen? When the Stamp first
turned on, all pins would be in input mode, and
the LED would be dark. A fraction of a second
later, the LOW instruction would execute,
changing pin 0 to output/low. The LED would
light.

470
pin 0

LED

+5

Figure 1. An implicit END instruction
makes the LED blink.

After that, there are no more instructions for
the Stamp to execute. With its work complete,
the Stamp does the only sensible thing; it
executes an END instruction and goes to sleep.

During sleep, the LED stays on, but every 2.3
seconds it blinks off for a fraction of a second.

The Stamp resets every 2.3 seconds during
sleep, and its pins go into input mode during
reset. This reset takes about 18 milliseconds—
long enough for you to see a visible blink in the
LED.

This behavior can affect other devices as well.
Suppose the Stamp were connected to a serial
device. Every 2.3 seconds it would lose control of
the pin being used for output. The glitch could
cause “garbage characters” to appear at the
serial receiver.

Problems caused by the implicit END
instruction are rare in finished programs, since
most are loops. But during casual testing it’s
quite common to type in a few lines to see what
happens. If you want to avoid letting the Stamp
execute that unwritten END, try this:

LOW 0 ' Light the LED.
stop: GOTO stop ' Freeze here.

Mighty Frustratin’ Power Dangers

While we’re on the subject of resets, let’s talk
about unwanted resets caused by an inadequate
power supply.

The Stamp and Counterfeit both come with 9V
battery clips. A built-in voltage regulator drops
this input voltage to a steady 5-volt supply for
the rest of the electronics.

The regulators are quite efficient. They only
require an input of slightly over 5 volts in order

Stamp Applications no. 9, November 1995

2

to maintain regulated 5 volts out. However, if
the input voltage falls below their dropout
voltage—the voltage at which they can no longer
regulate the output—all bets are off.

This can happen more often than you might
think, even with a battery that measures well
over 5 volts. Although a battery is shown as a
single component in schematic diagrams, it acts
like two components, a voltage source and a
series resistance. As the battery wears out, the
voltage decreases and the series resistance
increases. It’s the increased series resistance
that usually gets you.

Battery
voltage

(decreases)

Internal
resistance
(increases)

Figure 2. As a battery wears out,
its internal resistance increases.

When a 9V battery is down to 7 volts, it’s still
well above the voltage regulator’s dropout
voltage, which may be as low as 5.1 volts. But
the battery’s internal resistance has increased
to, say, 50 ohms. If your circuit draws a total of
50 mA, the voltage drop across that internal
resistance becomes 0.05 x 50 = 2.5 volts. (Ohm’s
Law—current in amperes times resistance =
voltage.) The battery delivers just 7 – 2.5 = 4.5
volts to the regulator’s input. The result is that
the supply is no longer in regulation, and a reset
can occur.

I saw a particularly acute example of this in a
recent on-line help message. A user had
connected a radio-control servo (positioning
motor with built-in electronics) to the Stamp,
and was powering both from the same four-pack
of AA penlight cells. The circuit was totally
erratic. The cause was fairly obvious—whenever
the batteries (only 6 volts total) tried to deliver
large currents to move the servos, the large
voltage drop across their internal resistance
caused a brownout to the Stamp, which reset
itself.

This problem is more severe with newer
Stamps, which have a “brownout reset” IC on
board. These reset the processor any time the
regulated supply falls below 4 volts. Older
Stamps had no such circuit, and could continue
to operate at 2.5 volts or less. This sometimes
caused problems, because different parts of the
circuit shut down at different voltages, causing
a kind of temporary insanity. (The Counterfeit
also has a brownout circuit, which kicks in at
approximately 3.4 volts.)

Here are some hints for tracking and fixing
power-supply related problems:

• If a circuit behaves erratically and you
suspect that varying loads are to blame, try
removing those loads and rerunning the
program. If it works OK without the load, you
need to beef up the power supply, or use a
separate supply.

• Don’t draw more than 50 mA from the
Stamp’s built-in 5-volt supply, or 100 mA from
the Counterfeit’s supply.

• If your application involves motors or other
high-current loads, use separate sets of batteries
for the Stamp and the load. Just connect the
grounds together.

• If you have multiple Stamps or other circuits
running from a single power supply, don’t daisy-
chain the wiring; wire each module back to the
power supply terminals separately.

Divide and Conquer

PBASIC can perform simple arithmetic on 16-
bit positive integers. A 16-bit variable can range
from 0 to 65535. What if your application
involves calculations that generate numbers
larger than 65535?

I recently answered an e-mail help request
that illustrates the problem and a way to solve
it. Dan DiLuzio was building a pH meter, a
device that measures the acidity or alkalinity of
a solution on a scale of 0 to 14. He had a pH
probe and some analog circuitry that converted
the pH to a 0- to 5-volt output, where 0 volts
represented a pH of 14 and 5 volts a pH of 0.

An LTC1298 analog-to-digital converter (ADC)
(described in Stamp Applications no. 4, June
1995) allowed the Stamp to read in the 0- to 5-
volt signal as a 12-bit number from 0 to 4095. To

Stamp Applications no. 9, November 1995

3

convert this number to a pH reading, Dan
needed to use the following formula:

pH = 14000 – (ADC_result * 14000/4095)

This formula uses the number 14,000 to
represent the full-scale reading of 14. Just
moving the decimal point three places to the left
(14.000) would scale the readings to real pH
units. The trouble is that when the pH is 0 the
ADC reads 4095, and the calculation
ADC_result * 14000 equals 57,330,000. That’s
beyond PBASIC’s maximum integer of 65,535.

Dan was starting to think that he’d have to
abandon some of the precision offered by the 12-
bit ADC, and content himself with readings of 0
to 14 or 0.0 to 14.0 at best. But I showed him
how to chop the problem up into smaller pieces
by factoring, preserve precision, and stay within
the bounds of 16-bit math.

I started by factoring the constants 14,000 and
4095 into smaller integers. Since 4095 is close to
4096 (212) I cheated and changed it to the more
convenient value. Here are the factors:

14,000 = 7*5*5*5*2*2*2*2
4096 = 2*2*2*2*2*2*2*2*2*2*2*2

I then rearranged Dan’s formula into a series
of smaller alternating multiplications and
divisions. I eliminated cases in which the
number would be multiplied by 2 then divided
by 2, since these have no net effect. I wound up
with:

ADC_result * 7 / 4 * 5 / 4 * 5 / 4 * 5 / 4

Trying this with the troublesome maximum
value of 4095, I got an answer of 13,995—within
a fraction of a percent of the correct answer of
14,000. And no calculation exceeded PBASIC’s
limit. I passed this info to Dan, along with the
suggestion that he use a correction factor or
calibrate the analog circuitry to eliminate the
small bias introduced by fudging 4095 to 4096
and by the lost fractions due to integer
arithmetic. He reported back: problem solved!

Timing NOT to Set Your Watch By

On the BS1-series Stamps, you can generate
or measure pulses with 10-microsecond (µs)
resolution. On the BS2, pulse resolution is 2 µs.

This fine timing precision leads some users to
believe that the Stamps are also very accurate.
They’re not, and the discussion that follows
should interest both Stamp users and folks who
never quite grasped the distinction between
precision and accuracy .

First, you must understand that all Stamp
timing is referenced to an internal oscillator
whose frequency is set by a ceramic resonator.
Resonators are similar in properties to quartz
crystals, but are built to withstand rough
treatment like shock and vibration. The tradeoff
is that a mediocre crystal’s actual frequency is
usually within ±0.005 percent [50 parts per
million (ppm)] of its nominal or rated frequency,
while a good ceramic resonator may be within
±1 percent.

Putting that into perspective, a clock
controlled by a 50-ppm crystal might be off by 4
seconds a day; with a 1-percent resonator the
error could be close to 15 minutes a day!

On the BS1, the nominal 4-MHz resonator can
operate at 3.96 to 4.04 MHz. A BS2’s 20-MHz
resonator can range from 19.8 to 20.2 MHz.
(These ranges are based on the hypothetical 1-
percent tolerance; some resonators are as sloppy
as 3 percent.)

If a BS1 is used to measure a 200-millisecond
(ms) pulse, the result should be 20,000 units of
10 µs apiece. But if the resonator is off by 1
percent, the actual reading could range from
19,800 to 20,200.

This resulted in a Stamp user calling me for
help. He was trying to use a BS1 to produce
pulses that were measured by a BS2 in order to
simulate his final application involving motor-
speed measurement. The two Stamp clocks were
not only off frequency, but may have been off in
opposite directions (above and below nominal),
resulting in an error of close to 2 percent, and
hundreds of pulse-timing units.

He was shocked, having expected that the fine
precision of the pulse commands (units of 10 and
2 µs) also meant high accuracy, with results
within a few units of right on the money. Nope;
accuracy can’t be any better than the timing
reference, which is only good to ±1 percent. Bear
this in mind when designing any time-critical
application.

Stamp Applications no. 9, November 1995

4

Bowlegs, Brackets and Bugs with the BS2

If you bought one of the early BS2s, you
received the “preliminary documentation,” a
dump of just the essential information required
to get started with the new Stamp. Because of
some major improvements in PBASIC’s
structure, the BS2 dialect is not backwardly
compatible with the BS1.

One change that’s causing headaches for users
who are accustomed to the BS1 is the new role
of parentheses (like the ones surrounding this
text). On the BS1, bowlegs enclose lists, such as
data items for Serout, Lookup, Lookdown and
Sound. The BS1 does not support the use of
parentheses to change the order of math and
logic operations. The BS2 does.

As a result, Parallax had to find a new way to
enclose lists of data items, which might include
expressions enclosed in bowlegs, and it chose
square brackets [like these].

The change is sufficiently subtle that I didn’t
notice it on first reading of the new docs, but the
host software brought it to my attention several
times when I wrote my first BS2 program! I’m
hoping this explanation will help you remember
when to use bowlegs and when to use brackets.

Here are more tips for BS2 users:
• The serial commands now require baud rate

expressed in terms of microseconds – 20. To
convert a desired baud rate, divide it into 1,
multiply the result by 1 million and round off,
then subtract 20. Try 9600 baud: 1/9600 =
104.167 x 10–6 . Multiply by a million and round
off: 104. Finally, subtract 20: 104 – 20 = 84.
That’s your baud-rate timing. For other baud-
mode options (expressed as hex numbers in the
documentation), just add them to the calculated
timing value. For example, to invert the serial
output at 9600 baud, use $4000 + 84.

• If you’re planning to use the new X-10
remote control command Xout, or the
synchronous-serial instructions Shiftin and
Shiftout, make sure to get the new application
notes from Parallax. And get the whole notes,
not just the source code. The accompanying text
and illustrations are probably more important
than the programs to really understanding how
these new features work.

• Having trouble downloading programs to a
BS2? The problem may be that the host software
can’t figure out which serial port the BS2 is
connected to. You can specify the port when you
boot the software by adding the switch /1 for
com 1 or /2 for com 2. For example:

STAMP2 /1

launches the host program for com port 1.
• The new BS2 method of reading and writing

the I/O pins seems to be puzzling some people.
It’s probably because you no longer have
predefined variables called “pin0, pin1...pin7.”
Under the new PBASIC, you have a pair of 16-
bit variables called INS and OUTS which hold
the input and output states of the pins.

To use the individual bits of these registers,
you need to define bit variables, like so:

in_pin1 var INS.bit1 ' Pin 1 input.

This may take some getting used to, but in the
long run you’ll appreciate the flexibility of the
new approach.

• If you’re using the BS2 to display data on
the LCD Serial Backpack, there’s a neat trick
you should know. By using the new comparison
feature of Lookdown and the decimal-digit
function Dig, you can right-align a numeric
display. See the listing for an example.

Back Issues of Stamp Applications

One of the biggest headaches associated with
writing a monthly column is handling requests
for reprints of previous installments. On one
hand, it’s flattering that readers who see a
sample of the column want more. On the other,
more practical hand, it’s brutally expensive to
make and mail paper copies.

Here’s an information-age alternative: I have
posted an electronic copy of the first seven
Stamp Applications columns (March through
September 1995) to locations on Compuserve
and the Internet. You can download, read, and
print these copies using your PC (under
Windows) or Mac computer and free Adobe
Acrobat software (version 2.0 or higher).

The file is called “ST_APPS1.PDF.” It’s
roughly 250kB in size and contains the
equivalent of 34 letter-sized pages, including all

Newer versions of the manual, sucha s the one on this CD-ROM, are vastly improved.

Better still, go to www.nutsvolts.com to access any issue of Stamp Applications.

Stamp Applications no. 9, November 1995

5

text, drawings, and photos that appeared here
in N&V . On Compuserve, it’s located in the
Hobby Electronics library of the Consumer
Electronics Forum. On the Internet, it’s on the
Parallax ftp site, ftp.parallaxinc.com.

The free Acrobat reader is available from the
Adobe forums on Compuserve; it’s also on the
Parallax ftp site.

For those of you who prefer the convenience of
hard copy, call my order line (Sources) and
plunk down $10 by credit card. We’ll ship you
the whole seven-issue collection printed on
three-hole-punched paper for storage in a
standard school binder.

I will prepare new compilations of the column
and post them to those same on-line locations
every six months. At the same time, I’ll also
make new hard copies available.

Of course, your best bet is to make sure that
your subscription to N&V is always paid up...

Sources

For more information on the BASIC Stamp,
contact Parallax Inc., 3805 Atherton Road no.
102, Rocklin, CA 95765; phone 916-624-8333;
fax 916-624-8003; BBS 916-624-7101; e-mail
info@parallaxinc.com.

Send questions, suggestions, or requests for
future Stamp Applications to:

Scott Edwards Electronics, 964 Cactus Wren
Lane, Sierra Vista, AZ 85635; phone 520-459-
4802; fax 520-459-0623; e-mail (Compuserve) at
72037,2612; on the Internet 72037.2612 @
compuserve.com. Scott offers Stamp-related
kits, including:

The Counterfeit controller, a kit alternative to
the BASIC Stamp, is $29. Double- and quad-
speed options are $2 and $4, respectively. The
Counterfeit Development System, required to
program Counterfeits (also for programming
original BASIC Stamps, like the BS1-IC) is $69
and includes 150-page manual, downloading
cable kit, Parallax software, and one Counterfeit
controller kit.

The LCD Serial Backpack is a tiny
daughterboard that attaches to 1- and 2-line
LCDs to convert their fussy parallel interface to
Stamp-compatible serial at 2400 or 9600 baud.
The Backpack is $29; with a 16x1 LCD, $40.

A printed collection of the first seven
installments of Stamp Applications is $10. See
the text of the column for free, on-line sources of
this material.

Prices are postpaid (express shipping and
CODs extra). Visa, Mastercard, American
Express accepted for phone/fax orders. POs
accepted on approved credit. Personal checks
and money orders are welcome for mail orders.

New contact information: Scott Edwards Electronics, Inc. 2700 E. Fry Blvd. Suite A4Sierra Vista, AZ 85635ph: 520-459-4802; fax 520-459-0623web: www.seetron.come-mail: scott@seetron.com

The 16x1 LCD is no longer available, having been replaced with a 16x2. Visit www.seetron.com for current info. The printed version of the Stamp Applications columns is also obsolete, now that the reprints are available free on this CD and through the Internet.

Stamp Applications no. 9, November 1995

6

' Program: RJ_DEMO.BS2 (Right-justified printing with Stamp 2)
' This program demonstrates how to print numbers on the LCD Serial
' Backpack with right justification. This means that the ones place
' is always in the same location on the screen regardless of the
' number of digits in the number. This program uses a Lookdown table
' as a function that returns the number of decimal digits in a given
' 16-bit value.

I con 254 ' Instruction toggle command.
ClrLCD con 1 ' Clear-LCD instruction.
prn_at con 140 ' Display RAM, address 13 (128+12).
j var word ' 16-bit counter variable.
pos var byte ' Cursor position to print at.
numDig var nib ' Number of digits of number.
N96N con $4054 ' 9600 baud, inverted, no parity.

low 0 ' Make the serial output low
pause 1000 ' Let the LCD wake up.
serout 0,N96N,[I,ClrLCD,I] 'Clear the LCD.
serout 0,N96N,["Number: "] ' Print the fixed label.

' The loop below counts from 0 to 20000 and dislays the current count
' on the LCD Serial Backpack. The Lookdown table determines how many
' digits are in the current value of the count in order to position
' the printout aligned on the rightmost digit. It works by determining
' whether a given number is less than 10 (1 digit); between 10 and 100
' (2 digits), etc. The table is good for values from 0 to 65534.

Loop:
 for j = 0 to 20000 ' Count to 20,000.
 lookdown j,< [0,10,100,1000,10000,65535],numDig ' Get # of digits.
 pos = prn_at - numDig ' Adjust the screen position.

 serout 0,N96N,[I,pos,I,DEC j," "] ' Print j at adjusted screen pos.
 pause 50 ' Slow the count a little.
 next ' Keep going to 20,000.
goto Loop ' Do it again.

