
Stamp Applications no. 28 (June ’97):

Nifty Networking Chips
Link Stamps Far and Wide

Use an RS-485 transceiver
for reliable network comms
by Scott Edwards

STAMPS ARE GREAT for bridging the gap
between PCs and hardware sensors or controls.
The Stamps easily communicate with the PC
serial port, and just as easily interface with
primitive hardware on its own terms.

The obvious next step is to network Stamps
together so that a single PC can gather data
from Stamps scattered around the house,
garden, building, or factory.

While Stamps offer some built-in networking
capabilities, you’re probably pushing your luck if
you build a network more than a few dozen feet
long. If you want real networking, you want RS-
485.

This month’s column will show how to
interface Stamps to an RS-485 transceiver chip
for easy and robust network communication.

What’s RS-485? You are probably familiar with
RS-232, the electronics industry specification
that describes a garden-variety computer serial
port used to communicate with modems and
other accessories. In RS-232 signaling, a positive
voltage (+5 to +15V) represents a digital 0, and
a negative voltage (–5 to –15V) a 1. Those
voltages are specified relative to a signal
ground, which must be common to both RS-232
devices. I say “both” because RS-232 is meant to
connect only two devices at a time. According to
the specs, maximum cable lengthis 50 feet.

RS-232 calls for separate transmit and receive

lines, so both ends of an RS-232 connection may
send and receive data simultaneously, a
capability called full duplex.

RS-485 is an alternative standard designed to
allow multiple devices (up to 32) to communicate
over a single pair or wires up to 4000 feet long.
RS-485 signals are not referenced to ground per
se, but to the voltage difference between the two
wires of the signaling pair. The two wires of the
pair are designated A and B; when the voltage
on A is greater than the voltage on B, that’s a
digital 1. When B is greater than A, that’s a 0.

This differential signaling is nearly immune to
noise pickup over long wire runs. The only catch
is that the local ground potentials of the RS-485
devices cannot differ by more than ±7 volts. If
they do, the system won’t work.

Since only one pair is used for receive and
transmit, the RS-485 devices have to take turns
using it. This is called half duplex. If two RS-485
units try to transmit at the same time, the error
condition is called bus contention.

Making RS-485 work. An RS-485 network is
like a group of people using walkie-talkies on a
single frequency. There are two major
limitations:

• When a unit is listening, it cannot talk;
when talking, it can’t listen.

• If two units talk at the same time, neither
will be heard correctly.

Stamp Applications no. 28, June 1997

2

LTC1487 Pinout

1 Receiver out
2 Receiver enable
3 Driver enable
4 Driver in
5 Ground
6 A
7 B
8 Vcc

120
1

+5V

LTC1487

0.1µF

1k

120

B A B A

T W I S T E D P A I R W I R I N G B

A

B

A

NODE NODE

NODE

LASTStamp

xm_rcv (pin 0)

10k

serIO (pin 1)

Figure 1. Networking demo setup.

Given those limitations, it’s vital to coordinate
units’ behavior. One of the simplest ways to do
this is to appoint one unit master and all other
units slaves. No slave unit is permitted to
transmit until told to do so by the master unit.
This solves the problem of preventing units from
transmitting at the same time. It does, however,
require the master to check in with all of the
slave units periodically for updates. If a slave
unit possesses urgent information, it must still
wait until called upon by the master before
transmitting.

An RS-485 demo. Figure 1 illustrates how I set
up a demonstration network using four BS1
controllers connected to LTC1487 RS-485
transceivers. I chose the LTC1487 because it
has some virtues beyond the normal RS-485
specs, including capability for up to 256 units on
a line, low electromagnetic interference (EMI)
from the signaling wires, and various sorts of
fool-proofing against static electricity, open
inputs and bus contention. It also draws far less
current than most comparable devices, just
120µA in receive mode.

Hardware. The LTC1487 has separate driver-
enable and receiver-enable pins. The driver is
enabled by a 1 on pin 3; the receiver by a 0 on
pin 2. To conserve Stamp pins, I tied these
together so that a 0 means send and a 1 means
receive.

Why doesn’t the 1487 have just a single
send/receive pin? It supports two other modes:

one in which both the driver and receiver are
enabled, allowing a controller to hear its own
serial output. The Stamp can’t send and receive
simultaneously, so this mode is no use to it.

In the other unused mode, both the driver and
receiver are disabled. This amounts to shutting
off the LTC1487, reducing its current draw to
1µA. However, the LTC1487’s current draw in
receive mode is only 120µA. Unless your
application uses battery power and software-
controlled shutdown, the pin saved by
combining the enable inputs is more valuable
than the possible savings in current draw.

The 10k resistor to ground prevents the
LTC1487 from accidentally getting into transmit
mode when the Stamp is disconnected or reset.

I also tied the receiver output and driver input
lines together. Stamps can send and receive
through the same pin, so there’s no reason to do
otherwise. The 1k resistor in series with the
receiver-output prevents damage in the event
that the receiver is enabled while the Stamp is
trying to transmit data. This would occur only in
the event of a bonehead program bug, but a
resistor is cheap insurance.

A Stamp plus the LTC1487 circuit make up
what I’m calling a node in the figure. Per the
LTC1487 specs, you can have up to 256 nodes
along a 2000-foot stretch of twisted-pair wire.
The manufacturer’s application diagram shows
the use of shielded cable, with the shield
connected to ground at one end. For shorter
runs of wire in electrically quiet surroundings,

Stamp Applications no. 28, June 1997

3

you may find that shielding is not strictly
necessary. You also may find that you can run
the full 4000-foot RS-485 cable length if you
comply with the 32-node limit. Networking is
very much a your-mileage-may-vary kind of
business.

Figure 1 shows the first and last nodes on the
wire with 120Ω terminating resistors across A
and B. These help prevent reflections and
ringing on the network. I’m going to duck the
difficult job of explaining the theory behind
that—it is enough to understand this: A
properly terminated RS-485 network preserves
the nice, crisp on/off waveforms of the serial
data. An unterminated or incorrectly terminated
network can distort the signals, sometimes to
the point of causing data errors.

No matter how many nodes are connected to
the net, only two of them—first and last—get
terminating resistors.

One of the LTC1487’s fool-proofing features
(controlled slew rate) makes it less fussy about
net termination than other RS-485 devices, but
do it right anyway.

As I said before, it is not necessary for the
nodes to share a common ground. For my demo,
I powered the nodes with individual batteries so
that they were floating relative to ground. If
you’re setting up a net in which nodes will be
connected to separate grounds, make sure to
check for differences in ground potential with an
AC voltmeter. If the difference is greater than
±7 volts, you have a problem; the net won’t
work. A discussion of building electrical wiring
and grounding practices is waaay beyond the
scope of this column (and beyond my experience
as a non-electrician). Suffice to say that you
must check and if necessary correct grounding
problems before you continue with your net.

Software. Listings 1 and 2 show how I
programmed my demo network. Listing 1 runs
the master; listing 2 runs on each of the slaves,
which are identified A, B, and C.

The master program puts the LTC1487 into
transmit mode and sends the ID of one of the
slaves, followed by a number for the slave unit
to write to its unused six output pins. The
master then waits for the slave to acknowledge
receipt of the data by sending back its ID.

Because of the way BS1 serial input
instructions work, this network is fragile. If a
slave unit is turned off, the master will get stuck
waiting for acknowledgment. There are two
remedies: use a BS2 master and set a serial
timeout (listing 3), or dedicate an additional
Stamp to the job of monitoring the network and
resetting the master or providing a substitute
response.

Note that the listings send data to the slaves
in numeric text format (by preceding values
with #), rather than as single bytes. If data were
sent as bytes, it could accidentally match a
different slave’s ID, causing that slave to expect
further data. By limiting slave IDs to letters and
data to numbers, we prevent such conflicts. If
you’re not clear on how numbers are
represented as text, you might review Stamp
Applications no. 16, available through the N&V
web site, www.nutsvolts.com.

One more subtlety—the Serout instruction
that talks to a particular slave unit appends a
period “.” after the numeric data. This has no
significance other than to cause the receiving
program to recognize that it has received a
complete, valid number. I could have used any
non-numeric character, but the period seemed
appropriate

The slave program in listing 2 is just the
opposite of the master program. A slave waits to
receive its ID, then grabs the number that
follows and writes it to pins 2 through 7. It then
enables its transmitter and sends its ID back to
the master as an acknowledgment.

Listing 3 is a BS2 master-unit program. It
operates in exactly the way as the BS1 version,
but uses the BS2’s serial timeout capability to
recover from cases in which the slaves fail to
respond.

Refinements. I have only scratched the surface
of RS-485 networking, a pretty complicated
subject. If you decide to put some of the
principles shown here into action, be prepared
for some challenges. For example, if you make
changes to the protocol, the rules governing the
way the master and slaves communicate, you
will be fighting a debugging war on two fronts.
If the net doesn’t work, is the bug in the master

Stamp Applications no. 28, June 1997

4

code, the slave code, or both? What if the code is
fine, but you reset the master before the slaves
so that the slaves missed the message that
would have started the net? Or what about a
loose or incorrect connection? Or... You get the
idea.

One obvious refinement might be to include a
PC in your developing network. RS-232 to RS-
485 adapters are available from better computer
and electronics suppliers like Jameco (sources).
But you should be comfortable with serial-port
programming before you add this new
complication to your life.

Sources. For more information on the BASIC
Stamp, contact Parallax Inc., 3805 Atherton

Road no. 102, Rocklin, CA 95765; phone 916-
624-8333; http://www.parallaxinc.com.

The LTC1487 is available from Digi-Key, 701
Brooks Avenue South, PO Box 677, Thief River
Falls, MN 56701-0677; phone 1-800-344-4539,
fax 218-681-3380, net http://www.digikey.com.

Jameco Electronic Components, 1355
Shoreway Road, Belmont, CA 94002-4100;
phone 415-592-8097 or 800-831-4242; fax 415-
592-2503 or 800-237-6948.

Scott Edwards Electronics, PO Box 160, Sierra
Vista, AZ 85636-0160; phone 520-459-4802; fax
520-459-0623; Internet archive (catalog, user
manuals, samples) located at ftp.nutsvolts.com
in directory /pub/nutsvolts/scott; e-mail
72037.2612@ compuserve.com.

Listing 1. BS1 RS-485 Master
' Program: MASTR485.BAS (RS-485 net master)
' This program demonstrates some basic principles of using an RS-485
' transceiver chip (LTC1487 used in our setup). The program sends
' a byte to each of three 'slave' units, which write that bit
' pattern to their 6 output pins not used for RS-485 communication
' and control. To confirm receipt of the message, slaves reply with
' their node id, in this case "A", "B", or "C".

SYMBOL id = b11 ' ID number of net node.
SYMBOL reply = b10 ' Response from node.
SYMBOL pinSet = b9 ' Pin setting for node.
SYMBOL xm_rcv = 0 ' Pin 0 sets transmit (1) or receive (0).
SYMBOL serIO = 1 ' Pin 1 is used for serial input/output.

' For the purpose of the demo, the pinSet value that the master will
' tell the slaves to write to their outputs will be an easy-to-
' recognize sequence: 000001 000010 000100 001000 010000 100000 000001...
' You can connect LEDs to the slaves' pins 2-7 to watch the sequence,
' or take my word for it. Since the lowest two bits are reserved for
' use by the RS-485 transceiver, the starting pattern is 00000100.
begin:
 pinSet = %00000100 ' Starting bit pattern.
again:
 pause 1000 ' Run slowly for demo purposes.
 for id = "A" to "C" ' Cycle through ids A, B, C.
 high xm_rcv: pause 1 ' Turn on 485 transmitter; wait briefly.
 serout serIO,T2400,(id,#pinSet,".") 'Send id, bit pattern, and ".".

New contact information: Scott Edwards Electronics, Inc. 2700 E. Fry Blvd. Suite A4Sierra Vista, AZ 85635ph: 520-459-4802; fax 520-459-0623web: www.seetron.come-mail: scott@seetron.com

Stamp Applications no. 28, June 1997

5

' MASTR485.BAS continued

 low xm_rcv ' Switch to receive mode.
 serin serIO,t2400,reply ' Receive the slave's response.
 debug "Unit ", #@reply," OK.",cr ' Display on debug screen.
 next ' Next unit.
 debug cr,cr ' Scroll the screen.
 pinSet = pinSet * 2 ' Shift bit pattern left.
 if pinSet = 0 then begin ' If bitpattern is 0, reload %00000100.
goto again ' Else continue.

Listing 2. BS1 RS-485 Slave
' Program: SLAVE485.BAS (RS-485 net slave)
' This program demonstrates some basic principles of using an RS-485
' transceiver chip (LTC1487 in our setup). The program waits for
' an ID letter matching the value myID set below. When that letter
' is received, the data that follows--a number in text format like
' "192"--is saved to the byte variable and then written to the upper
' six output pins. The program acknowledges receipt of the data
' by sending its ID back to the master.
' >>The master program is set up to expect three slaves with ids "A",
' "B" and "C". Use this program for all slaves, but change the symbol
' myId below to "B" and "C" for the other slave units.

SYMBOL myId = "A" ' ID letter of this node.
SYMBOL pinSet = b10 ' Pin setting for node.
SYMBOL xm_rcv = 0 ' Pin 0 sets transmit (1) or receive (0).
SYMBOL serIO = 1 ' Pin 1 is used for serial input/output.

again:
 dirs = %11111100 ' Set upper 6 pins to output.
 low xm_rcv ' Set 485 transceiver to receive mode.
 serin serIO,t2400,(myId),#pinSet ' Wait for id, then receive number.
 pinSet = pinSet & %11111100 ' Strip off two lowest bits of number.
 let pins = pinSet ' Write that value to outputs.
 high xm_rcv: pause 10 ' Set 485 transceiver for transmit.
 serout serIO,T2400,(myID) ' Send back my ID letter.
goto again ' Do it all over.

Stamp Applications no. 28, June 1997

6

Listing 3. BS2 RS-485 Master
' Program: MASTR485.BS2 (RS-485 net master for BS2)
' This program demonstrates some basic principles of using an RS-485
' transceiver chip (LTC1487 used in our setup). The program sends
' a byte to each of three 'slave' units, which write that bit
' pattern to their 6 output pins not used for RS-485 communication
' and control. To confirm receipt of the message, slaves reply with
' their node id, in this case "A", "B", or "C". If a slave does not
' respond within 100 milliseconds, this BS2 version of the master
' program displays an error message and carries on.

id var byte ' ID number of net node.
reply var byte ' Response from node.
pinSet var byte ' Pin setting for node.
xm_rcv con 0 ' Pin 0 sets transmit (1) or receive (0).
serIO con 1 ' Pin 1 is used for serial input/output.
T2400 con 396 ' Noninverted 2400-baud serial baudmode.

' For the purpose of the demo, the pinSet value that the master will
' tell the slaves to write to their outputs will be an easy-to-
' recognize sequence: 000001 000010 000100 001000 010000 100000 000001...
' You can connect LEDs to the slaves' pins 2-7 to watch the sequence,
' or take my word for it. Since the lowest two bits are reserved for
' use by the RS-485 transceiver, the starting pattern is 00000100.
begin:
 pinSet = %00000100 ' Starting bit pattern.
again:
 pause 1000 ' Run slowly for demo purposes.
 for id = "A" to "C" ' Cycle through ids A, B, C.
 high xm_rcv: pause 1 ' Turn on 485 transmitter; wait briefly.
 serout serIO,T2400,[id,DEC pinSet,"."] 'Id, bit pattern, and ".".
 low xm_rcv ' Switch to receive mode.
 serin serIO,T2400,100,netErr,[reply] ' Get response.
 debug "Unit ", reply," OK.",cr ' Display on debug screen.
errReturn:
 next ' Next unit.
 debug cr,cr ' Scroll the screen.
 pinSet = pinSet * 2 ' Shift bit pattern left.
 if pinSet = 0 then begin ' If bitpattern is 0, reload %00000100.
goto again ' Else continue.

' If a slave unit does not repond within 100ms, the program comes here
' to display an error message on the screen, then continues with the
' next unit.
netErr:
 debug "Unit ", id,": NO RESPONSE.",cr ' Display on debug screen.
 goto errReturn

