
Stamp Applications no. 26 (April ’97):

Stamp Gives the Green Light
To Efficient Programming

A model traffic signal
and some neat Stamp peripherals
by Scott Edwards

THE ELECTRONICS Q&A column here in N&V
is an amazing resource. Q&A editor T. J. Byers
will go to any length to find the answers to his
readers’ questions. Recently, he came to me.

A reader had come into possession of a real
stoplight, and wanted to know how to build a
circuit that would realistically sequence the red,
yellow and green lights. T.J. half kiddingly
suggested a player-piano arrangement of
motors, cams and switches, and referred the
question to me for a Stampified solution.

So this month we’ll learn how to sequence a
traffic light, with special emphasis on storing
and retrieving data with Lookup tables. We’ll
also have a peek at new Stamp peripherals that
store data, keep time, and control motors.

Playing Traffic Cop. It hardly seems
necessary to discuss what a traffic signal does,
since we spend way too much of our time looking
at examples—usually lit up red in our direction
for an interminable time.

But it’s my habit to describe a problem by
making sketches and jotting notes and
calculations before I set out to write a program.
In this case, I drew a pairs of traffic signals at a
hypothetical intersection. One light would
control a north-south street, the other east-west.

I identified six states for the lights in a normal
traffic sequence, as shown in figure 1. For the
sake of simplicity, I decided that this
intersection would be the timer-controlled
variety, not demand-controlled by the presence
or absence of traffic. After all, the reader
probably wants his light to sequence
continuously, without the need for somebody to
pull up in a Chevy.

The lights remain in each of the six states for
varying amounts of time, ranging from less than
a second for both-red, through 2 seconds for
yellow, to 8 seconds for red/green. I picked the
times arbitrarily. I made a note to make sure
that the program allowed any timing parameter
to be changed easily.

E-W N-S E-W N-S E-W N-S E-W N-S E-W N-S E-W N-S

100001 100010 100100 001100 010100 100100Bit pattern:

8 2 0.5 8 2 0.5Time (sec):

RED GRN RED YEL RED RED GRN RED YEL RED RED RED

Figure 1. Stoplight sequence.

Stamp Applications no. 26, April 1997

2

Figure 2 shows how I rigged a simulated
stoplight with red, yellow and green LEDs. Note
that you may have to fiddle with the series
resistor values in order to get more-or-less equal
brightness from the three different colors of
LEDs. Each color of LED has a different forward
voltage and efficiency.

GREEN0

YELLOW

RED

GREEN

YELLOW

RED

LEDs

1k all*

*If yellow and green LEDs are too
dim w/this resistance, decrease it to
taste (not below 220Ω).

1

2

3

4

5

North/South

East/West

Stamp
Pins

Figure 2. Hookup for listings 1 and 2.

Equipped with my two models—a mental
model of stoplight operation and a physical
model of the lights themselves—I was ready to
program.

Looking at my sketch (figure 1), I determined
that the job boiled down to retrieving two pieces
of information from a lookup table; the patterns
of the six lights and the length of time they
should remain in that pattern. PBASIC includes
a Lookup instruction that allows you to fetch
data from a table based on its position or index .
An obvious approach would be to prepare two
lookup tables, one with bit patterns and the
other with times.

However, I wanted to illustrate a couple of
PBASIC capabilities that many users forget: (1)
Lookup-table entries can be up to 16 bits long,
and (2) The STAMP2 host program can perform
compile-time math that can make a program
more readable without taking up additional
program memory.

Listings 1 and 2 are the result. The programs
are thoroughly commented, so I won’t repeat

that stuff here. Suffice to say that these are very
compact programs with plenty of room left over
for your customization.

New Stamp Peripherals. Solutions Cubed, a
California electronic-design firm that does new-
product development, has rolled out four new
modules designed to work well with the Stamps.
They recently sent me samples of their four
Mini-Mod (miniature engineering module)
products for evaluation. Figure 3 is a family
portrait. Three of the modules are serially
interfaced peripherals that serve mass storage,
timekeeping, and motor-control functions. The
fourth is a smart power supply that derives
regulated 5V from a pair of AA batteries. Prices
range from $25 to $30.

The RAMPack and Pocket Watch serial
peripherals have a neat feature—they
automatically sync to the baud rate (1200, 2400,
4800 or 9600) of incoming serial data. They
perform this magic by requiring that a
synchronizing character of 055h (01010101
binary, or the ASCII code for the letter ‘U’)
precede any other communication. Here’s a
quick rundown on the features of the individual
modules:

RAMPack: RAMPack allows you to store and
retrieve up to 8kB of data in a static RAM chip.
As shipped by Solutions Cubed, the RAM in
RAMPack is the volatile kind that loses data
when power is removed. However, the device is
compatible with battery-backed nonvolatile
RAM packages. Just pry the original RAM chip
out of its socket and pop in the NV RAM device.

Storing data in RAMPack requires that you
send the sync byte, a write instruction (0), the
number of bytes to store (1 to 8), two bytes
comprising a 16-bit starting address in RAM,
and finally the data bytes themselves. So a
minimal complete write package would contain
six bytes.

Reading data back from RAM follows a similar
sequence: sync byte, read instruction (1),
number of bytes, and 16-bit address. RAMPack
gives your Stamp program about 500µs to set up
for serial input (Serin), then transmits the
requested data.

Stamp Applications no. 26, April 1997

3

Mini Watt
• Regulated 5V supply
• Two AA cells
• NiCd charger
• AC adapter input
• Uninterruptable supply

RAM Pack
• Serial interface
• 8kB storage
• Accepts NV SRAMs

Motor Mind
• Serial interface
• Controls speed, direction
• Tachometer output

Pocket Watch
• Serial interface
• Real-time clock
• Alarm function

Figure 3. Mini-Mods family of Stamp-friendly peripherals.

RAMPack looks like an interesting alternative
to EEPROM data storage in applications that
require continuous data recording. EEPROMs
can only take a limited number of write cycles,
and the larger EEPROMs have the most limited
write-endurance, typically 100,000 writes. RAM
can be rewritten an unlimited number of times.
On the other hand, EEPROM is the hands-down
winner when maximum battery life is required,
since the Stamp can drive it directly, and it
draws little current (a few microamps) when
inactive.

Pocket Watch: This module is a real-time clock
with alarm function. The alarm is an output pin
that can signal the Stamp, light an LED, or
power a small buzzer.

Pocket Watch understands instructions that
set and read the time and alarm and turn the
alarm on and off. Unlike most other real-time
clocks, which express time in binary-coded
decimal (BCD) numbers, Pocket Watch uses
byte values for seconds, minutes, hours, days,
months, and years.

Pocket Watch is significantly easier to
interface to the Stamps than a normal real-time
clock chip. It’s sole disadvantage is higher
current draw. Pocket Watch draws a constant 5
mA (about the same as a BS1). Most real-time
clock chips run on a few microamps while
keeping time, and perhaps 1 mA while
communicating with a controller.

Motor Mind: Robotics enthusiasts take note:

Motor Mind is a complete 2-amp H-bridge motor
controller with 2400-baud serial input and a
built-in tachometer function. It understands
instructions that set motor speed in 256 steps,
brake and reverse the motor, and measure
motor speed. A dedicated “override” input can
stop the motor. This could be connected to a
limit/panic switch, or driven by circuitry that
senses excessive current draw or temperature to
prevent damage to the motor or electronics.

Mini Watt: This unit is a combination
regulated power supply and intelligent battery
charger. It can provide up to 200mA continuous
current at 5V from a pair of rechargeable NiCd
batteries. It automatically handles the details of
charging the batteries from an AC adapter
input, while maintaining an uninterrupted
supply at the 5V output.

Wrapup: These engineering modules are a real
bargain at the prices Solutions Cubed is
charging. They are probably meant to serve as
advertisements of the company’s engineering
services—much the way car companies build
concept cars to show off their design prowess. If
you can use these neat modules as-is, snap ’em
up. If you need custom design work for a project,
call these guys. They understand Stamps, and
have successfully converted Stamp-based
designs into commercial products.

Sources. For more information on the BASIC
Stamp, contact Parallax Inc., 3805 Atherton

Stamp Applications no. 26, April 1997

4

Road no. 102, Rocklin, CA 95765; phone 916-
624-8333; http://www.parallaxinc.com.

For Mini Mods mentioned in this article or
custom design work, contact Solutions Cubed,
3029-F Esplanade, Chico, CA 95926; phone 916-
891-8045; fax 916-891-1643; Internet
http://www.solutions-cubed.com.

For a catalog of serial LCDs and Stamp-
related products, contact Scott Edwards
Electronics, PO Box 160, Sierra Vista, AZ
85636-0160; phone 520-459-4802; fax 520-459-
0623; Internet at ftp.nutsvolts.com in
/pub/nutsvolts/scott; e-mail 72037.2612@
compuserve.com.

Listing 1. Stoplight control for BS1
' Program: STOPLITE.BAS (Sequence a stoplight from a lookup table.)
' This program generates proper green-yellow-red sequencing for a
' pair of traffic signals controlling an intersection. I refer
' to one street as "EW" (east-west) and the other as "NS" (north-
' south). Pins are connected to LEDs as follows:
' pin5 EW/red pin2 NS/red
' pin4 EW/yellow pin1 NS/yellow
' pin3 EW/green pin0 NS/green
' ====Constants===
' The program uses six 16-bit constants to represent the states
' of the lights (lower 6 bits) and the length of time to leave
' the lights in those states (upper 10 bits). The usual way
' to create such constants is to define the bit patterns
' and the times separately, then have the compiler add or
' logically OR them together. Unfortunately, the simple STAMP
' host program doesn't have this feature, so we'll have to do
' it by hand. Here's how the constants are organized:
' Duration (ms) Pattern of lights
' \ /
' |=========|====|
SYMBOL NSgo = %0010000000100001 ' NS green/EW red, 8192 ms.
SYMBOL NSyel = %0000100000100010 ' NS yellow/EW red, 2048 ms.
SYMBOL allRed = %0000001000100100 ' NS red/EW red, 512 ms.
SYMBOL EWgo = %0010000000001100 ' NS red/EW green, 8192 ms.
SYMBOL EWyel = %0000100000010100 ' NS red/EW yellow, 2048 ms.
' ===Variables===
SYMBOL seq = b11 ' Current state (0-5) of stoplight sequence.
SYMBOL lkup = w4 ' Number from lookup table.
' ===Program===
dirs = %00111111 ' Set lower six pins to output.
again: ' Endless loop.
for seq = 0 to 5 ' For each of six stored patterns/times..
 lookup seq,(NSgo,NSyel,allRed,EWgo,EWyel,allRed),lkup ' Get bits.
 pins = lkup & %00111111 ' Copy lower 6 bits to pins.
 lkup = lkup & %1111111111000000 ' Strip off lower 6 bits.
 pause lkup ' Set delay to upper 10 bits.
next ' ..and get the next entry from the table.
goto again ' Repeat endlessly.

New contact information: Scott Edwards Electronics, Inc. 2700 E. Fry Blvd. Suite A4Sierra Vista, AZ 85635ph: 520-459-4802; fax 520-459-0623web: www.seetron.come-mail: scott@seetron.com

Stamp Applications no. 26, April 1997

5

Listing 2. Stoplight control for BS2
' Program: STOPLITE.BS2 (Sequence a stoplight from a lookup table.)
' This program generates proper green-yellow-red sequencing for a
' pair of traffic signals controlling an intersection. I refer
' to one street as "EW" (east-west) and the other as "NS" (north-
' south). Pins are connected to LEDs as follows:
' P5 EW/red P2 NS/red
' P4 EW/yellow P1 NS/yellow
' P3 EW/green P0 NS/green

' ====Constants===
' The program uses six 16-bit constants to represent the states
' of the lights (lower 6 bits) and the length of time to leave
' the lights in those states (upper 10 bits). Here's how the
' constants are organized:
' Duration (ms) Pattern of lights
' \ /
' |=========|====|
' The BS2 host software permits compile-time math (math done on
' the PC before downloading to the Stamp), which we'll use to
' combine two sets of constants--one representing light patterns
' and another times. This allows you to change the timing of
' the lights (or the bit patterns, if you wired the lights
' differently) without worrying about how the bits are packed
' into their 16-bit packages.

NSgrn con %00100001 ' Make NS green, EW red.
NSyel con %00100010 ' Make NS yellow, EW red.
allRed con %00100100 ' Make both lights red.
EWgrn con %00001100 ' Make EW green, NS red.
EWyel con %00010100 ' Make EW yellow, NS red.

NSgoTime con 8192 ' Set NS green duration (in milliseconds).
yelTime con 2048 ' Set duration of any yellow.
EWgoTime con 8192 ' Set EW green duration.
redOverlap con 512 ' Set red/red overlap time.

' The bit-pattern and timing constants are combined as follows:
' The time is logically ANDed with %1111111111000000, which
' clears the lower 6 bits to 0s while leaving the upper 10
' bits intact. The result is logically ORed with the 6-bit
' light pattern, which copies the 1s of the pattern into the
' lower 6 bits. If this ANDing and ORing is unfamiliar, check
' out Stamp Applications #14, April 1996 for a quick lesson
' in Boolean logic. (See the N&V web site or contact the
' magazine for back issues.)

Stamp Applications no. 26, April 1997

6

top10 con %1111111111000000 ' Mask off lower 6 bits.
btm6 con %0000000000111111 ' Mask off upper 10 bits.

NSgo con NSgoTime & top10 | NSgrn ' 16-bit time/bit pat.
NSwarn con yelTime & top10 | NSyel ' "
allStop con RedOverlap & top10 | allRed ' "
EWgo con EWgoTime & top10 | EWgrn ' "
EWwarn con yelTime & top10 | EWyel ' "
' ===Variables===
seq var nib ' Current state (0-5) of stoplight sequence.
lkup var word ' Number from lookup table.
' ===Program===
DIRS = %00111111 ' Set lower six pins to output.
again: ' Endless loop.
for seq = 0 to 5 ' For each of six stored patterns/times..
 lookup seq,[NSgo,NSwarn,allStop,EWgo,EWwarn,allStop],lkup ' Get bits.
 OUTS = lkup & btm6 ' Copy lower 6 bits to pins.
 pause lkup & top10 ' Set delay to upper 10 bits.
next ' ..and get the next entry from the table.
goto again ' Repeat endlessly.

