
Stamp Applications no. 24 (February ’97):

Modem Lets Stamps Access
Global Communication Network

Dialing for Stamp Data
and Beginner’s Race Timer with Display
by Scott Edwards

FOR $30 OR LESS, you can connect your Stamp
project to the biggest communication network on
the planet—the global phone system. All you
need is a modem and a few tricks of the trade.

This month, we’ll look at the powerful “AT”
modem-control language with an example
application that lets you access Stamp data as
easily as logging onto a computer bulletin-board
system (BBS) or online service. In BASIC for
Beginners, we’ll add a display and other
features to our three-lane race timer.

Modem Fundamentals. A modem is a small,
fast computer specialized for sending and
receiving serial data across the phone lines in
the form of audio tones. At low data rates, shifts
in the frequency of the tones convey individual
bits of data; at higher rates, changes in phase
and/or amplitude of the signal represent
multiple bit combinations.

The word m o d e m is a compaction of
modulator/demodulator. Impressing data onto
tones is modulation; extracting data from
modulated tones is demodulation.

The modem’s computer is programmed with
routines to dial the phone, detect ringing and
busy signals, establish a connection with
another modem, exchange data, and hang up. It
has all kinds of settings for dealing with subtle
variations in phone procedures and user
preferences. In fact, a modem has more settings,
options, instructions, and raw computing power

than the BASIC Stamp II (BS2) that we’ll be
using to boss it around!

Almost all modems use some variation of the
“Hayes” command set, named for the company
that set the standard for modems in the early
days of personal computing. This control
language is also sometimes called the AT
command set, because most commands begin
with AT (for “attention,” or so the story goes).

A modem has two modes of operation—
command mode and data mode. When the
modem is not linked to another modem, it’s in
command mode, awaiting instructions from the
local computer. The computer can instruct the
modem to dial out or answer a call from another
modem. When two modems initially make
contact, they investigate each other through
handshaking—a ritual exchange of tones and
preliminary data that sets the ground rules for
communication.

Once handshaking is complete, the modem
goes into data mode. In data mode it acts like a
direct connection between local and remote
computers. Once in data mode, a modem ignores
commands unless it is first returned to
command mode by a sort of secret knock
(usually “+++” followed by a delay). Otherwise,
it would be impossible for modem users to
communicate about modem commands without
their modems trying to carry out those
commands!

When the exchange of data is complete, one of

Stamp Applications no. 24, February 1997

2

the computers issues the secret knock to return
its modem to command mode, then instructs it
to hang up. The other modem senses this loss of
carrier, and hangs up too.

Meet Your Modem. The modem you’ll need for
Stamp applications is an external modem—one
designed to be connected through a serial port,
not installed inside a desktop computer
(internal). If you don’t have one, let me suggest
Jameco part no. 132206, a 9600-baud external
modem with power supply and cable for $29.95
(Sources). This is an older unit that may not be
available forever, so keep your eye open for
bargains on similar external-style modems.

A benny of buying an older modem is that it
usually comes with a good manual on the AT
command set. In the old days users generally
dealt directly with the modem, manually typing
commands through a terminal program. The

manuals that come with newer modems assume
that you’re using more helpful software and
therefore require less technical data.

To really understand how a modem works, you
should try using it manually with your PC and
terminal software. If you have Windows
installed, there’s a simple terminal “accessory”
program. Procomm is a popular commercial
package, available in both DOS and Windows
flavors.

Although the modem manual lists dozens of
commands, you can get by with knowing a few
important ones. Table 1 lists the ones I found
helpful in getting the Stamp on line. Once your
terminal program is set up and talking to the
modem, you may send commands by typing
them at the keyboard. For example, if you type
“ATDT 5551234” followed by the Enter key, the
modem will go off-hook (connect to the phone
line) and send the touch-tone digits 555-1234.

Table 1. Some Useful AT Modem Commands

Instruction Operation

ATDT n Dial n using touch tones. ATDT 4594802 dials 459-4802. The number to dial
can include other symbols that change way it is dialed, including:
, Pause dialing
W Wait for second dial tone
; Stay in command mode after dialing

A/ Repeat last command entered.

ATH0 Hang up.

ATA Answer the phone now (manual answer).

ATV0 Set modem reponses to numbers (0—10)

ATV0 Set modem reponses to words (e.g., CONNECT 2400).

ATZ Return modem to default settings.

AT&W Store configuration settings to nonvolatile memory.

ATS0=0 Turn off auto-answer function.

ATS0=n Turn on auto-answer and set for n rings.

ATM0 Silence speaker.

ATM1 Turn speaker on while dialing; off during communication.

ATE0 Do not echo commands.

ATE1 Echo commands.

+++ Escape command: shifts modem from data to command mode after a preset
time delay (set by register S12).

ATS12=n Set escape (+++) delay to n number of 20-millisecond units. For example,
ATS12=50 sets the escape delay to 1 second.

Stamp Applications no. 24, February 1997

3

235237

P0

BS2

100k

22k
22

Modem

RING INDICATOR (1=ringing)

SIGNAL GROUND

TRANSMIT DATA >

RECEIVE DATA <

Figure 1. Modem-to-BS2 Hookup.

Configuring and Using the Modem. Once
you know how to send commands to the modem,
you can configure it to work in our example BS2
application. As figure 1 shows, we’re using the
BS2’s serial programming port to talk to the
modem. A peculiarity of this port is that
everything sent to it on the serial-in line is sent
back to the serial-out line. Modems are factory
configured to do the same thing.

If you take a modem out of the box and have a
BS2 send it a command, the modem will echo
the command. The BS2 will echo the echo, which
the modem will echo, which the BS2 will echo...
to infinity and beyond , if I may quote Buzz
Lightyear’s catchy motto.

A further catch is that this loop effect prevents
the BS2 from issuing the ATE0 (no-echo)
command. You must configure the modem
properly before it will understand anything the
BS2 has to say.

Listing 1 includes a table of configuration
commands to send to the modem to prepare it
for use with the BS2. Once the modem is
configured, you should use the AT&W command
to commit the configuration to nonvolatile
memory so that it is preserved after the modem
is turned off and back on.

As you can see from the program listing, it is
possible for even a very simple program to
answer the phone, establish a link, and
communicate by modem. You can use this
program as a basic framework for your own
applications.

Advanced Applications. If you decide to

develop modem-based applications, you will
almost certainly need a telephone-line
simulator. I used the Digital Products Company
Party Line unit, which I built from a kit
(Sources). If your construction skills are at the
beginner level, or you tend to disregard
instruction manuals, I recommend buying the
assembled version. It’s not a difficult kit, but the
large number of components may exceed short
attention spans.

Although I demonstrated how to receive a call,
you can use the same principles to have the
Stamp dial a call and log onto a BBS or on-line
service. Most of the work in developing this kind
of application would be in carefully documenting
the log-on procedures for the Stamp to follow.

Don’t overlook the fact that modems allow you
to access other phone services. You can dial
pagers or automated touch-tone menus and send
them sequences of tones. The manual I received
with the Jameco modem provides an example
under the heading Dialing a Voice Call/Sending
Tones as Data.

In your applications, make sure to take
advantage of the BS2’s Serin timeout feature. If
no data is received within a set period of time
(up to 65+ seconds) the BS2 can abort the Serin
operation. You can see an example of this in
Listing 1 when the program is listening for the
connect code (“10”). If no connect occurs within
10 seconds (set by the constant tLink), the
program hangs up and waits for another call.

My final hint: Use the lowest practical data
rate in modem comms. The faster the rate, the
more fragile the link. You can spend your nights

Stamp Applications no. 24, February 1997

4

and weekends writing clever and elaborate
error-detection and correction code, but that
code can grow to overwhelm the Stamp’s
program memory. Also, at very high data rates
the Stamp may be unable to recognize longer
WAIT sequences (like the password “USER” in
listing 1). I’ve received credible information to
this effect from a seasoned BS2 user, and I’ll
investigate the problem (and provide a solution)
in a future column.

BASIC for Beginners. In the column before
last (no. 22, December ’96), we developed a
prototype three-lane race timer for Pinewood
Derby racing. (Pinewood racers are small,
gravity-powered cars crafted from a block of
wood and raced on an inclined track.)

In its previous state of development, the
program could track the individual finish times
of three cars in terms of the number of timing
loops and display the loop counts on the Debug
screen. Our next hurdles are to free the program
of the PC by giving it a standalone display, and
to convert its loop-count values into seconds.

+5V
10k (all)

Race Start

Finish 3

Finish 2

Finish 1

pin 7

pin 2

pin 1

pin 0

BS1

+5V

pin 3

LCD Serial Backpack-equipped
2x16 Display

Figure 2. Race timer schematic.

For the display, I chose the 2x16 Serial LCD
Module that my company makes. Aside from the
fact that they’re readily available, these LCDs
look slick, can display mixtures of words and
numbers, and are easy to drive with the Stamp’s
Serout instruction. Setting aside my obvious
bias, I think you would be hard pressed to find a
better display for the purpose.

Interfacing the display to the Stamp consists
of connecting ground, +5V, and one Stamp
input/output (I/O) pin. To print text to the
display, output it serially through the
appropriate I/O pin at 2400 baud, inverted:

Serout 3,N2400,("RACE IN PROGRESS")

To print the value of a variable, use this form:

Serout 3,N2400,(#time1)

That assumes that the variable named time1 is
already defined using the Symbol directive. See
listing 2 for examples.

The serial LCD also accepts instructions that
control how it displays data. There’s a list of
instructions in the manual, but many
applications get by with just two: clearing the
screen and positioning the cursor. To tell the
display that an instruction is coming, just
precede it with a byte containing 254, like so:

Serout 3,N2400,(254,1)

The 254 alerts the display to expect an
instruction; 1 is the instruction to clear the
screen. After the instruction, the display returns
to data mode.

Positioning the cursor works similarly. The 2-
line by 16-character (2x16) LCD screen is
mapped to a set of addresses. The first line
consists of addresses 128 through 143; the
second, 192 through 207. Each of these
addresses is a byte of RAM in the LCD
controller. The LCD has additional RAM (a total
of 80 bytes), but locations outside the ranges
mentioned above are not visible on a 2x16
display.

To set the printing location to a particular
spot on the screen requires sending the
instruction prefix followed by the screen
address:

Stamp Applications no. 24, February 1997

5

Serout 3,N2400,(254,200)

The cursor moves to address 200, which is
character 8 of the screen’s second line. (The
manual that comes with the display includes a
map of the whole screen, so it’s not necessary to
memorize this stuff.) The program in listing 2
uses just these clear-screen and cursor-position
instructions to organize the race-time data on
the display.

Now that we have a way to display data
without the PC, we need to do some work on the
data itself. The prototype program expresses
racing time in terms of the number of program
loops executed before a racer crosses the finish
line. By running that program and comparing
the loop values to stopwatch time, I found that
338 loops equal 1 second. A straightforward way
to convert loops to seconds would be to divide by
338.

Since the Stamp deals only in integer math,
race results would be only in whole numbers of
seconds; 1,2,3... It’s reasonable to expect that
many races would be decided by a margin of a
fraction of a second. We want our timer to report
times with appropriate precision.

The first improvement to consider would be
moving the decimal point. Instead of reporting
seconds, how about tenths or hundredths of a
second? The program executes 33.8 loops every
1/10th second or 3.38 loops every 1/100th. To
convert loops to 1/100ths, just divide by 3.38.
Oops—there’s that integer math limitation
again. The Stamp can divide by 3 or 4, but not
by 3.38. Dead end? Not quite.

Another way of looking at a division problem
is to consider it as multiplication by a fraction.
Dividing a number by 3, or multiplying it by
one-third have the same effect. And the Stamp
can multiply by a fraction, which is nothing
more than integer multiplication followed by
integer division. The trick is to find an integer
fraction that’s equal to 1/3.38.

There are lots of ways to approach this
problem, but I find that common sense favors
this method: (1) Estimate the largest value of
the numerator (the “1” in 1/3) that can be used
without exceeding the maximum variable size.
(2) For each integer up to the maximum, pick a

likely candidate for the denominator and
calculate the result.

An example will make this clear. For step 1,
the largest numerator depends on the size of a
Stamp word variable (65535 max), the number
of loops per second (338), and the maximum
number of seconds we wish to measure. If we
want to measure times up to 20 seconds, then
the maximum value for the numerator is
65535/(338*20) = 9. That narrows our search
considerably.

In step 2, for numerators from 1 to 9, we’re
looking for denominators that make the fraction
as close as possible to 1/3.38 (0.295858). That’s
pretty close to 1/3, so candidate denominators
should be between three and four times the
numerator. Simplified this way, we can quickly
run the numbers on a hand calculator, or create
a spreadsheet or PC program to do it for us. In
this case, the number of trial values is small:

Numerator Denominator Result Error %
1 3 0.333 +11
1 4 0.250 –15
2 7 0.286 –3.4
3 10 0.300 +1.4
4 13 0.308 +4
5 16 0.31 +5.6
5 17 0.294 –0.6
6 21 0.286 –3.4
7 23 0.304 +2.87
7 24 0.292 –1.4
8 27 0.296 +0.15
9 31 0.290 +0.29

The fraction 8/27 gives us the smallest error,
just 0.15 percent. Over the course of a 20-second
race, that would be 30 milliseconds, or 3/100ths
of a second. Considering that the error would
apply equally to all cars, and that the timing
accuracy of the Stamp’s internal clock is ±0.5
percent, that seems acceptable.

Now that we have a usable fraction, the rest is
easy; multiply the loop count by 8/27 and
display the results as 1/100ths of a second.
Listing 2 shows how this is done.

For a more human-friendly display, the
program inserts a decimal point so that
numbers like 891 hundredths of a second show
up as 8.91 seconds. And since some races may be

Stamp Applications no. 24, February 1997

6

decided by a margin of less than 1/100th of a
second, the program also uses the raw loop
count to declare the winner (or winners, in the
case of a tie). It uses a process-of-elimination
logic, reasoning that any race time that is
greater than one or the other or both of the
other times is a loser. Any time that’s not a loser
is marked on the display as a winner. If there’s
one winner, it will be the only time marked. If
there’s a tie, the tied times will be marked as
winners (co-winners , I guess).

That wraps up our race-timer project, at least
for now. In the future, I’ll use it as a basis to
demonstrate different display techniques,
hardware timing options, sensors, etc.

Sources. For more information on the BASIC
Stamp, contact Parallax Inc., 3805 Atherton
Road no. 102, Rocklin, CA 95765; phone 916-
624-8333; http://www.parallaxinc.com.

Digital Products offers the Party Line phone-
line simulator used to develop and test the
modem application for $199.95 in kit form (add
$32.95 for a nifty case) or $425 fully assembled
and tested. They also offer other phone-related
electronic kits and products. Digital Products

Company, 134 Windstar Circle, Folsom, CA
95630; phone 916-985-7219; fax 916-985-8460;
e-mail DigProd@aol.com.

Jameco sells the inexpensive modems used in
this application. Jameco Electronic Components,
1355 Shoreway Road, Belmont, CA 94002-4100;
phone 415-592-8097 or 800-831-4242; fax 415-
592-2503 or 800-237-6948.

The 2x16 Serial LCD Module used in the race-
timer example is available from Scott Edwards
Electronics for $45 plus shipping. Other serial
LCDs up to 4x40 lines-x-characters are
available. The same source also offers the LCD
Serial Backpack, a daughterboard that converts
any alphanumeric LCD module up to 80
characters to serial operation. Manufacturers
can purchase the Backpack chip for
incorporation into their own products for less
than $4 in quantity.

For a catalog of serial LCDs and Stamp-
related products, contact Scott Edwards
Electronics, PO Box 160, Sierra Vista, AZ
85636-0160; phone 520-459-4802; fax 520-459-
0623; Internet at ftp.nutsvolts.com in
/pub/nutsvolts/scott; e-mail 72037.2612@
compuserve.com.

Listing 1. BS2 Program to Demonstrate Modem Interface

' Program: ANSW_MDM.BS2 (Answer modem and exchange data)
' This program demonstrates how the BS2 can be used with
' an AT/Hayes-compatible modem to link up with incoming
' modem calls and exchange data. It uses the programming/
' downloading serial port plus one I/O line for the modem
' hookup. Before this program can be used, the modem must
' be configured to work with the BS2's serial port by
' disabling echo-back of commands. (Failure to do this
' will cause the modem's RD and SD lights to stay lit
' continuously and the modem to become locked up.) Prepare
' the modem by connecting it to a PC running terminal
' software at 2400 baud, N81, full duplex. Send the modem
' configuration commands, as follows.
' Type this command Modem Responds Purpose/Effect
' ----------------- -------------- ---------------------
' ATS0=0 <Enter> "OK" or "0" Disable auto-answer
' ATS12=50 <Enter> "OK" or "0" Set "+++" response to 1s
' ATV0 <Enter> "0" Set number responses
' ATE0 <Enter> "0" Disable command echo
' AT&W <Enter> "0" Memorize configuration

New contact information: Scott Edwards Electronics, Inc. 2700 E. Fry Blvd. Suite A4Sierra Vista, AZ 85635ph: 520-459-4802; fax 520-459-0623web: www.seetron.come-mail: scott@seetron.com

While this program has worked fine in many cases, you may want to use the code from the book (X10CTL.BS2) for your modem interface. This program relies on receiving the modem's 'connected' code. while that one simply waits for the connection to be established. For a variety of reasons, it's possible to miss the 'connect' code and terminate a perfectly good connection.

Stamp Applications no. 24, February 1997

7

' After the ATE0, your typing won't be visible on the screen
' unless you reconfigure the terminal for half-duplex.
' These settings are stored in nonvolatile memory, so the modem
' does _not_ have to be reprogrammed if power is turned off.
' Connect the BS2 to the modem as follows:
' BS2 Modem DB25
' --
' DB9, pin 2 pin 2
' DB9, pin 3 pin 3
' DB9, pin 5 pin 7
' I/O pin P0 (thru 22k resistor) pin 21
' Turn the modem on first, then the BS2. When the phone rings,
' the BS2 will instruct the modem to answer and try to establish
' a connection. If connection is successful, the remote computer
' will see a sign-on message and be prompted for a password ("USER").
' The BS2 will then transmit a simulated batch of data. When the
' BS2 hangs up, the remote computer's modem will hang up too, ending
' the exchange.

lf con 10 ' Linefeed character to format data.
tLink con 10000 ' # of milliseconds to wait for link up.
N2400 con 16780 ' Baudmode for 2400 bps inverted.
TxD con 16 ' Pin to output serial data.
RxD con 16 ' Pin to input serial data.
RI var IN0 ' Ring-indication output of modem.

waitForRing: ' When phone rings, RI goes high.
 if RI = 0 then waitForRing ' Wait here while RI is low.

pickUpPhone:
 serout TxD,N2400,["ATA",cr] ' Tell modem to pick up.
 serin RxD,N2400,tLink,Disconnect,[wait ("10")] ' Wait for link.
 pause 10000 ' 10-second pause for modem stuff.
 serout TxD,N2400,["WELCOME TO BS2 BBS!",cr,lf,"logon: "]
 serin RxD,N2400,[wait ("USER")] ' Wait for password.
 serout TxD,N2400,100,[cr,lf,"Simulated data here...",cr,lf]
 pause 1000
 serout TxD,N2400,100,["Hanging up now.",cr,lf]

Disconnect:
 pause 2000
 serout TxD,N2400,["+++"]
 pause 2000
 serout TxD,N2400,["ATH0",cr]
goto waitForRing

Stamp Applications no. 24, February 1997

8

Listing 2. BASIC for Beginners Race Timer with Display

' Program RACE2.BAS (Three-lane race timer with display)
' This program shows how the BS1 (or Counterfeit) can
' be used to time a three-lane Pinewood Derby race.
' It converts a raw count of program loops into
' units of 1/100th of a second and presents them on
' a serial LCD display.

SYMBOL time1 = w2 ' Word variable for lane-1 time.
SYMBOL time2 = w3 ' Word variable for lane-2 time.
SYMBOL time3 = w4 ' Word variable for lane-3 time.
SYMBOL start = pin7 ' Start-switch on pin 7; 0=start.
SYMBOL status1 = bit0 ' Status of lane 1; 1=racing, 0=done.
SYMBOL status2 = bit1 ' Status of lane 2; 1=racing, 0=done.
SYMBOL status3 = bit2 ' Status of lane 3; 1=racing, 0=done.
SYMBOL win = bit3 ' Flag to indicate race winner.
SYMBOL stats = b0 ' Byte variable containing status bits.
SYMBOL pos = b11 ' Printing location.
SYMBOL digits = b10 ' Digits to display.
SYMBOL timeDat = w1 ' Timing data to convert/display.
SYMBOL iPre = 254 ' Instruction prefix for LCD.
SYMBOL clrLCD = 1 ' Clear LCD screen.
SYMBOL blank = 8 ' Blank the LCD (but retain data).
SYMBOL restore = 12 ' Restore LCD.
SYMBOL topLft = 128 ' Move to top-left of LCD screen.
SYMBOL topRt = 136 ' Move to top-right of LCD screen.
SYMBOL btmLft = 192 ' Move to bottom left of LCD screen.
SYMBOL btmRt = 200 ' Move to bottom right of LCD screen.

begin:
 stats = %111 ' All cars in the race to begin.
 time1=0:time2=0:time3=0 ' Clear timers.
 serout 3,n2400,(iPre,clrLCD) ' Clear the display.
 pause 5
' The line below is sneaky--it prints "Race in Progress" to the
' LCD, then blanks the LCD so that the message is hidden. That
' way, the program can display the whole 16-byte message by just
' sending a 2-byte 'unblank display' instruction.
serout 3,n2400,("Race in Progress",iPre,blank)

hold:
 if start =1 then hold ' Wait for start signal.
 serout 3,n2400,(iPre,restore) ' Restore "Race in Progress" to LCD.

Stamp Applications no. 24, February 1997

9

timing: ' Time the race.
 stats = stats & pins & %111 ' Put lowest 3 pin states into stats.
 if stats = 0 then finish ' If all cars done, then race over.
 time1 = time1 + status1 ' If a car is in race (status=1) then
 time2 = time2 + status2 ' increment its timer. If it's done
 time3 = time3 + status3 ' (status=0) don't increment.
goto timing ' Loop until race over.

finish:
 serout 3,n2400,(iPre,clrLCD) ' Clear display.
 pause 5
 serout 3,n2400,(iPre,btmRt,"-FINAL-") ' Print FINAL.
 timeDat=time1: pos=topLft:gosub Display ' Display race times.
 timeDat=time2: pos=topRt:gosub Display
 timeDat=time3: pos=btmLft:gosub Display

END ' End program--reset to time another race.

' This subroutine converts the loop count in the variable timeDat
' into a number of hundredths of a second, then prints that value
' (as seconds, with decimal point) at the screen location specified
' by the variable pos.
Display:
 serout 3,n2400,(iPre,pos) ' Move to display location.
 if timeDat > time1 OR timeDat > time2 OR timeDat > time3 then noWin
 serout 3,n2400,("*") ' Put * by winner (or winners, if tie)
 goto skip1
noWin:
 serout 3,n2400,(" ") ' Put space by non-winners.
skip1:
 timeDat = timeDat*8/27 ' Convert to 100ths of a second.
 digits = timeDat/100 ' Print hundreds place followed
 serout 3,n2400,(#digits,".") ' ..by decimal point.
 digits = timeDat//100 ' Now print remainder.
 if digits > 9 then skip0 ' If remainder is less than 10,
 serout 3,n2400,("0") ' ..print "0" (i.e., convert
skip0: ' "6" to "06" for correct display.
 serout 3,n2400,(#digits)
return ' Return to program.

