
Stamp Applications no. 20 (October ’96):

Use the BS1’s Debug Output
For Stamp-PC Communication

Plus a big-digit clock demo
for the BASIC Stamp II
by Scott Edwards

GIVE ME ONE MORE PIN! That seems to be the
battle cry of Stamp users everywhere. This
month, we’ll show you a sneaky way to use the
Stamp’s debug capability to send data to a PC
through the serial port.

For you BS2 users, I’ll also present a big-digit
clock application. A sneaky technique uses
graphics symbols and lookup tables to create 1"-
high digits on an ordinary a 4x20 serial LCD.

The Debug protocol. I can almost guarantee
you that your mental model of how BS1 Debug
works is entirely wrong. Don’t feel bad; mine
was too.

Debug is the instruction that lets you examine
the contents of any variable through a window
in the STAMP.EXE host program. For example,
debug b2 shows you the contents of variable b2.
Before I started researching this article, I’d have
guessed that the debug instruction caused the
Stamp to send the contents of b2 up the
programming cable via some custom serial
protocol. I would have been wrong on both
counts!

Any debug instruction in your program causes
the BS1 to send the contents of all variables up
the programming cable in plain, old 4800-baud
asynchronous serial, true polarity. That means
that if you invert this data and convert it to RS-
232 levels, you can receive it with a PC running

terminal software.
You can program a Stamp with listing 1 and a

PC with listing 2, connect them together as
shown in figure 1, and bingo, you can examine
every byte of the Stamp’s memory.

This approach has a couple limitations. First
of all, at 4800 baud, the Stamp takes almost
two-tenths of a second to send a debug string.

Table 1. Debug Data Format

Byte No. Use/Meaning
0—63 Synchronization
64—70 Used by STAMP.EXE
41 Pins (input)
72—80 Used by STAMP.EXE
81 Pins (output)
82 Dirs (direction register)
83—96 B0—B13 user variable3

Since only 17 bytes of the debug format are of
any real use, that works out to only 80 bytes per
second (equivalent to 800 baud).

And while I was working on the program in
listing 2, I got occasional device errors from the
PC com port. I never did figure out what caused
them, since the error message provides no
additional clues as to the origin of the problem.

Despite those drawbacks, I can’t help but
think that this information will be mighty
handy in some applications.

Stamp Applications no. 20, October 1996

2

21

1/6 of 74HCT04
Hex inverter

10k

+5V

GND: pin 7
+5V: pin 14
Unused inputs
(pins 3, 5, 9, 11, 13)
to GND or +5V

Other Connections
index
mark

Stamp
Programming

Header

0.1µF

PC Serial (COM) Port
DB25 PINS DB9 PINS

3 2

7 5

Figure 1. Hookup diagram for viewing debug output.

Giant-Character Clock Demo. My company
makes those serial LCD modules (LCD plus our
custom Backpack daughterboard) that so many
Stamp users incorporate into their applications.
My customers often call looking for really BIG
displays that can be read across the room. The
largest standard modules on the market have
characters less than a half inch tall, and most
have serious price tags.

To make matters worse, many of these
applications have the conflicting requirement
that the display also be able to show lots of data
at a glance. So the goal is a display that has a
few big characters, and lots of little characters.

Our next application is my solution to this
dilemma, based on a 4x20 serial LCD module.
Those of you who are interfacing LCDs directly
can undoubtedly adapt the approach to your
own application.

The idea is to use the LCD’s eight user-defined
characters as building blocks to construct 4-line-
tall symbols. Figure 2 shows the custom
characters I used; figure 3 is the hookup
diagram that also illustrates how the custom
characters can be arranged to create giant
numerals.

For the clock portion of the demo, I used the
real-time clock chip discussed in my Data
Collection Proto Board article (N&V , March ’96).

Listing 3 shows how the demo works. The part
of the program that generates the big characters
depends heavily on a series of lookup tables.
Since the custom symbols fall in the range of 0
to 7, which can be expressed as a 3-bit number,
they are represented by 4-bit nibbles in the
lookup table. Each 16-bit word of the lookup
tables actually represents four custom symbols.
The BS2’s nibble-addressing capability makes it
a snap to unpack the symbols to send them to
the display.

I liked this technique so much that I altered
the firmware of my product, the LCD Serial
Backpack, to load the custom symbol set of
figure 2 upon initialization. All 4x20 LCD
modules sold after July ’96 have these symbols
built in. If you want to define your own
characters, you still can. Just download the new
ones as usual.

But if you’re using this giant-character display
procedure, you can save more than 64 bytes of
program memory by skipping the character
downloading step at the beginning of the
program.

An interesting side effect of the way the
program works—reserving place for the colon
between the hours and minutes digits with
space characters—has the useful side effect of
blinking the colon without any code overhead!

Later versions of the 4x20 Serial LCD module can automatically generate giant numeric characters. Visit www.seetron.com for details.

Stamp Applications no. 20, October 1996

3

Graphic Data # Graphic Data

0 0,0,0,1,3,7,15,31 4 0,0,0,0,31,31,31,31

1 0,0,0,16,24,28,30,31 5 31,31,31,31,0,0,0,0

2 31,15,7,3,1,0,0,0 6 31,31,31,31,31,31,31,31

3 31,30,28,24,16,0,0,0 7 0,0,0,0,0,0,0,0

Figure 2. Custom symbols that make up the giant numerals.

P0

+5V

XTAL
32,768

P10

P11

P15

P14

Connections
to BS2

0.1µF

+5V

4x20 Serial
LCD Module

1k

10k

I/O

XT

XT

GND

Vcc

DATA

CLK

CE

NJU6355

1

Figure 3. Hookup diagram for the BIG_TIME demo program.

Stamp Applications no. 20, October 1996

4

If you’re interested in other applications of the
big-character technique, there are a couple of
documents on the Internet that can help. First,
see the program listing BIG_NUMS.BS2 on the
site ftp.parallaxinc.com. This program contains
a subroutine for converting 16-bit values from 0
to 9999 into the giant-character display shown
here.

A more complete discussion of big character
patterns, including text, appears in the
document ADV_LCD.PDF in my file archive on
the N&V ftp site: ftp.nutsvolts.com in the
subdirectory /pub/nutsvolts/scott. This document
may also be helpful to folks who are directly
interfacing an LCD module to the Stamp or
other microcontrollers without the assistance of
the LCD Serial Backpack daughterboard.

Sources. For more information on the BASIC
Stamp, contact Parallax Inc., 3805 Atherton
Road no. 102, Rocklin, CA 95765; phone 916-
624-8333; Internet http://www.parallaxinc.com.

Scott Edwards Electronics, PO Box 160, Sierra
Vista, AZ 85636-0160; phone 520-459-4802; fax
520-459-0623; Internet archive (catalog, user
manuals, samples) located at ftp.nutsvolts.com
in directory /pub/nutsvolts/scott; e-mail
72037.2612@ compuserve.com.

Scott carries the LCD Serial Backpack
described in this article for $29, and the 4x20
serial LCD module (with LED backlighting) for
$89.

Visa, Mastercard, American Express, and
Discover accepted. Personal checks and money
orders also welcome.

Listing 1. BS1 Program to Demonstrate Debug Output
'Program: DBUG.BAS
' This program sets the various memory variables to known
' values for viewing with the PC program in listing 2.

b0 = "A": b1 = "B": b2 = "C": b3 = "D"
b4 = "E": b5 = "F": b6 = "G": b7 = "H"
b8 = "I": b9 = "J": b10 = "K": b11 = "L"
b12 = "M":b13 = "N"
dirs = %00001111: pins = 0

loop:
 pause 2000 ' Wait 2 seconds.
 debug b0 ' Debug output.
 b0 = b0 + 1 ' Increment B0.
 random w6 ' Random number in B12 and B13 (W6).
goto loop ' Repeat forever.

New contact information:

Scott Edwards Electronics, Inc.
2700 E. Fry Blvd. Suite A4
Sierra Vista, AZ 85635
ph: 520-459-4802; fax 520-459-0623

web: www.seetron.com
e-mail: scott@seetron.com

Stamp Applications no. 20, October 1996

5

Listing 2. QBASIC Debug Viewer (for PCs running DOS)
DECLARE SUB showDebug ()
' Program: DBUG_IN.BAS (QBASIC program to work with BS1 debug output)
' This program demonstrates how to capture and interpret the serial
' data output by the BS1's debug instruction _without_ use of the
' STAMP.EXE software. This capability can be very handy when you
' need one more output from the Stamp, and only require one-way
' communication with the PC (Stamp -> PC), as for data acquisition.
' The center pin of the Stamp's 3-pin programming header must be
' connected to the serial data in of COM1 through a CMOS inverter
' or RS-232 line driver, as shown in the accompanying article.

' See the text and table 1 for the debug protocol.

DIM SHARED i AS INTEGER
DIM SHARED item AS INTEGER
DIM SHARED row AS INTEGER
DIM SHARED debugData$

' Open communications through com1 serial port. Set up the following
' parameters: 4800 baud, no parity, 8 data bits, 1 stop bit.
' Disable handshaking by setting the timeout values for all of the
' handshake inputs to zero; carrier detect (CD), clear to send (CS),
' data set ready (DS). In addition, disable the timeout for OPENing
' the port itself with OP0. Finally, set the port for INPUT access
' and assign it a 1024-byte receive buffer.

CLOSE ' In case port is left open from previous run.
' Open the com port for input at 4800 baud with 4096-byte buffer.
OPEN "com1:4800,N,8,1,CD0,CS0,DS0,OP0" FOR INPUT AS #1 LEN = 4096

' Now print the labels to the screen.
CLS : PRINT " =====BS1 DEBUG VIEWER====="
LOCATE 4, 25: PRINT "ASC"
LOCATE 4, 35: PRINT "DEC"
LOCATE 4, 45: PRINT "HEX"
LOCATE 5, 10: PRINT "INs:"
LOCATE 6, 10: PRINT "OUTs:"
LOCATE 7, 10: PRINT "Dirs:"
FOR i = 0 TO 13
 LOCATE (i + 8), 10: PRINT "B"; LTRIM$(RTRIM$(STR$(i))); ": "
NEXT

' Collect the debug data in a string variable. The loop below
' synchronizes on the 64 $F0 characters (240 decimal) sent by
' the Stamp at the beginning of a debug.
start:
i = 0
DO WHILE i < 64
again:

Stamp Applications no. 20, October 1996

6

 IF LOF(1) = 0 THEN GOTO again
 IF NOT EOF(1) THEN debugData$ = INPUT$(1, #1) ELSE GOTO again
 IF debugData$ = CHR$(240) THEN i = i + 1 ELSE i = 0
LOOP

' After the 64 sync characters, this instruction grabs the
' next 33 bytes that make up the debug output. Of these,
' only 17 hold useful information, but this is the
' easiest way to collect the data.
hold:
IF LOF(1) > 33 THEN debugData$ = INPUT$(33, #1) ELSE GOTO hold

' Show the INs register, which is located 10 items below the
' other registers in the string.
i = 0: row = 5: item = 8: showDebug

' Now show the other registers, OUTs, Dirs, and B0 through B13.
row = 6: item = 18
FOR i = 0 TO 15
 showDebug
NEXT

GOTO start ' Repeat until CTL-Break

SUB showDebug
 LOCATE (row + i), 26: PRINT MID$(debugData$, (item + i), 1); " ";
 LOCATE (row + i), 34: PRINT ASC(MID$(debugData$, (item + i), 1)); " ";
 LOCATE (row + i), 46: PRINT HEX$(ASC(MID$(debugData$, (item + i), 1))); "
";
END SUB

Stamp Applications no. 20, October 1996

7

Listing 3. Program Demonstrating Big Numerals on Serial LCD
' Program: BIG_TIME.BS2
' This program demonstrates a method for using a 4-line by
' 20 character serial LCD module to display 1-inch high
' numerals. In this demo, the BS2 displays the current time
' (HH:MM) in 1" digits, thanks to the assistance of an NJU6355
' clock chip, connected as shown in the accompanying article.
' (Owners of the Data Collection Proto Board can run this
' program without modification as the pin assignments for the
' clock are the same. Use the unswitched +5V supply for the
' LCD.)

'===
' PIN ASSIGNMENTS, SYSTEM CONSTANTS, TEMPORARY VARIABLES
'===

CLK con 15 ' Clock line for all serial peripherals.
DATA_ con 14 ' Data line for all serial peripherals.
NJU_CE con 11 ' Chip-enable for NJU6355 clock/calendar.
NJU_IO con 10 ' IO (read/write) for NJU6355; 1=write.
temp var byte ' Temporary variable used in several routines.
nbl var nib ' Temporary nibble.

'===
' NJU6355 CLOCK/CALENDAR CONSTANTS AND VARIABLES
'===
' The NJU6355ED clock/calendar chip maintains a 13-digit BCD account
' of the current year, month, day, day of week, hour, minute, and
' second. The clock subroutines transfer this data to/from a 13-nibble
' array in the BS2's RAM called "DTG" for "date-time group." The
' constants below allow you to refer to the digits by name; e.g.,
' "Y10s" is the tens digit of the year. Note that there's no "am/pm"
' indicator--the NJU6355 uses the 24-hour clock. For instance, 2:00 pm
' is written or read as 14:00 (without the colon, of course).
Y10s con 1 ' Array position of year 10s digit.
Y1s con 0 ' " " " year 1s "
Mo10s con 3 ' " " " month 10s "
Mo1s con 2 ' " " " month 1s "
D10s con 5 ' " " " day 10s "
D1s con 4 ' " " " day 1s "
H10s con 8 ' " " " hour 10s "
H1s con 7 ' " " " hour 1s "
M10s con 10 ' " " " minute 10s "
M1s con 9 ' " " " minute 1s "
S10s con 12 ' " " " second 10s "
S1s con 11 ' " " " second 1s "
day con 6 ' " " " day-of-week (1-7) digit.
digit var nib ' Number of 4-bit BCD digits read/written.
DTG var nib(13) ' Array to hold "date/time group" BCD digits.

NOTE: This program was written for an older version of the 4x20 serial display module. In order to use it with the current model, set the display's configuration switch to "OLD" mode. Or rewrite the program to take advantage of the display's new large-number capabilties.

Stamp Applications no. 20, October 1996

8

'===
' LCD SERIAL BACKPACK CONSTANTS/VARIABLES
'===
' The display for this application is a 4x20 alphanumeric LCD
' equipped with a Backpack daughterboard to convert it to a serial
' device. Newer Backpacks (sold July 96 and after) have the big-
' character building-block symbols preprogrammed; older units require
' that they be downloaded. If you're unsure, program the BS2 with
' just the line "serout 0,$4054,[0,1,2,3,4,5,6,7]" You should see
' an orderly row of ramp- and block-shaped symbols if the characters
' are built in. Otherwise, you'll see random patterns of dots. If
' that's the case, remove the comment marks from the sections of
' code indicated below.

I con 254 ' Instruction prefix.
ClrLCD con 1 ' Clear-LCD instruction.
N96N con $4054 ' 9600 baud, inverted, no parity.
cgRAM con 64 ' Address 0 of CG RAM.

EEptr var word ' Pointer into EEPROM.
pat var EEptr ' Alias for EEptr.
line var nib ' LCD line

' If the 4x20 serial LCD module you're using was purchased after July
' 1996, you may omit this code. Otherwise, remove the comment marks
' (') from the beginning of the lines below to activate this code.
'bitPat0 DATA 0,0,0,1,3,7,15,31 ' Left-right up-ramp
'bitPat1 DATA 0,0,0,16,24,28,30,31 ' Right-left " "
'bitPat2 DATA 31,15,7,3,1,0,0,0 ' Left-right down ramp.
'bitPat3 DATA 31,30,28,24,16,0,0,0 ' Right-left " "
'bitPat4 DATA 0,0,0,0,31,31,31,31 ' Lower block.
'bitPat5 DATA 31,31,31,31,0,0,0,0 ' Upper block.
'bitPat6 DATA 31,31,31,31,31,31,31,31 ' Full block.
'bitPat7 DATA 0,0,0,0,0,0,0,0 ' Full blank

'===
' DEMONSTRATION PROGRAM
'===
 DIRS = $FFFF ' Write 1s to all direction bits.

' setup =============
' Set the clock.

 DTG(Y10s)=9: DTG(Y1s)=6 ' Year = 96.
 DTG(Mo10s)=0: DTG(Mo1s)=7 ' Month = 07.
 DTG(D10s)=0: DTG(D1s)=5 ' Day = 05.
 DTG(day) = 2 ' Day of week (1-7) = 2 (Tuesday).
 DTG(H10s)=1: DTG(H1s)=2 ' Hour = 12.
 DTG(M10s)=5: DTG(M1s)=1 ' Minute = 50.
 gosub write_clock ' Write data to clock.

Stamp Applications no. 20, October 1996

9

low 0 ' Make the serial output low
pause 1000 ' Let the LCD wake up.

' ==
' Define Symbols in CG RAM
' ==
' If the 4x20 serial LCD module you're using was purchased after July
' 1996, you may omit this code. Otherwise, remove the comment marks
' (') from the beginning of the lines below to activate this code.
'serout 0,N96N,[I,cgRAM] ' Enter CG RAM.
'for EEptr = 0 to 63 ' Write the bit patterns..
' Read EEptr,temp ' ..to the LCD.
' serout 0,N96N,[temp]
'next

serout 0,N96N,[I,ClrLCD] ' Clear the LCD.
pause 1

' demo =============
' Continuously display the current date and time to the debug screen.
demo:
 gosub read_clock ' Update DTG data.
 gosub bigClock ' Display on LCD.
 serout 0,N96N,[I,201,5,I,157,4]
 pause 1000 ' Wait a second.

goto demo ' Do it again.

' ==
' NJU6355 CLOCK/CALENDAR SUBROUTINES
' ==

' read_clock =============
' Get the current date/time group from the NJU6355 clock and store
' it in the array DTG(n).
read_clock:
 low NJU_IO ' Set for read.
 high NJU_CE ' Select the chip.
 for digit = 0 to 12 ' Get 13 digits.
 shiftin DATA_,CLK,lsbpre,[DTG(digit)\4] ' Shift in a digit.
 next ' Next digit.
 low NJU_CE ' Deselect the chip.
return ' Return to program.

' write_clock =============
' Get the time stored in DTG(n) and write it to the NJU6355 clock.
' Note that the NJU6355 does not allow you to write the seconds digits.
' If clears the seconds digits when written, so if you set it for
' 08:30 (hh:mm), when the write is complete, the NJU6355 starts at
' 08:30:00 (hh:mm:ss).

Stamp Applications no. 20, October 1996

10

write_clock:
 high NJU_IO ' Set for write.
 high NJU_CE ' Select the chip.
 for digit = 0 to 10 ' Write 11 digits.
 shiftout DATA_,CLK,lsbfirst,[DTG(digit)\4] ' Shift out a digit.
 next ' Next digit.
 low NJU_CE ' Deselect the chip.
return ' Return to program.

' ==
' Subroutine Displaying Large Numbers
' ==
bigClock:
for line = 0 to 3 ' Four lines to display.
 lookup line,[128,192,148,212],temp ' Get start address of line.
 serout 0,N96N,[I,temp] ' Position the cursor on line.
 for digit = 3 to 0 ' For each digit:
 lookup digit,[9,10,7,8],nbl ' Get clock data.
 nbl = DTG(nbl)
 gosub getPattern ' Get symbols for line/digit.
 serout 0,N96N,[pat.nib3,pat.nib2,pat.nib1,pat.nib0] ' Send to LCD.
 if digit <> 2 then skip1 ' Make space for colon..
 serout 0,N96N,[32,32,32] ' ..after 2nd digit.
skip1:
 next ' next digit.
next ' next line.
return

' ==
' Subroutines Defining Big-Character Patterns
' ==
' Each digit is represented by four lines of four symbols. The branch
' instruction below picks the appropriate lookup table for the current
' line. The lookup table then returns the corresponding four symbols
' packed into a single word (16-bit) variable.

getPattern:
branch line,[first,second,third,fourth]

' 0 1 2 3 4 5 6 7 8 9
' --- --- --- --- --- --- --- --- --- ---
first:
lookup nbl,[$0551,$7067,$0551,$0551,$6776,$6555,$0557,$2556,$0551,$0551],pat
return

second:
lookup nbl,[$6776,$7767,$7743,$7743,$6776,$2441,$6041,$7703,$2443,$6776],pat
return

Stamp Applications no. 20, October 1996

11

third:
lookup nbl,[$6776,$7767,$0577,$7751,$2556,$7776,$6776,$7767,$0551,$2536],pat
return

fourth:
lookup nbl,[$2443,$7464,$6444,$2443,$7776,$2443,$2443,$7767,$2443,$7443],pat
return

