
Stamp Applications no. 18 (August ’96):

Need Analog Output from the Stamp?
Dial it in with a Digital Potentiometer

Using the DS1267 pot
as a versatile digital-to-analog converter
by Scott Edwards

GETTING AN ANALOG VOLTAGE out of the
Stamp is no problem at all. Just use the PWM
(pulse-width modulation) instruction as shown
in the manual, and you’re done.

There are some drawbacks to PWM, however.
The Stamps can’t output PWM continuously, so
you have to either buffer the output with analog
circuitry, or write your program to output PWM
as often as possible. PWM is also by definition
noisy, since it’s made up of a string of pulses. So
it may not agree with some loads that require
clean input voltages. Depending on the
characteristics of your filtering and buffering
circuitry, the PWM-generated voltage may not
be completely linear in proportion to the input
duty-cycle value. Finally, PWM is only readily
convertible into an output voltage , not a
resistance.

What we need is a do-it-all digital-to-analog
converter (DAC).

My nominee for the do-it-all DAC title isn’t a
DAC at all—it’s a digital potentiometer called a
DS1267. This month will look at how to
interface this goody to the BS1 and BS2, and
how to use it in a variety of applications.

In BASIC for Beginners we’ll look at two’s
complement—a method of working with
negative numbers using integer math.

Stirring the Pot. A potentiometer,
affectionately called a pot by techies, is a
resistor with a movable contact whose position

is controlled by turning a knob or sliding a lever.
Moving the wiper changes the resistance
between it and the fixed legs of the resistor. The
closer the wiper is to a leg, the lower the
resistance between them.

A pot’s resistance rating is the total resistance
between the fixed legs. The total resistance is
also equal to the sum of the resistances from the
wiper to each of the legs. I guess that’s
somewhat obvious, but it leads to a another
conclusion: a pot is a great voltage divider.

When you place a pair of resistors across an
input voltage, the voltage across one of them—
call it R1—is the ratio of that resistance to the
total resistance multiplied by the total voltage.
In symbols: VR1 = VTOTAL * (R1/(R1+R2)).

+V

Variable
Resistance

OR

Variable
Voltage

leg

leg

wiper

Potentiometer

Figure 1.
A pot can be used
to adjust
resistance or voltage.

Stamp Applications no. 18, August 1996

2

You can think of a pot as being two resistors—
one above the wiper, and one below. The total of
the two resistors is always the same; it’s the
rated resistance of the pot. When you move the
wiper, one resistance goes up and the other goes
down, but the total is fixed.

This makes the voltage-divider formula work
out neatly, since R1 + R2 never changes. At the
bottom of figure 1, labeled Variable Voltage,
suppose the pot shown was rated at 10k (10,000
ohms). If the wiper is set so that there’s 2k
between it and ground, and +V is 5 volts, what’s
the output voltage between the wiper and
ground?

VWG = 5V * (2,000/10,000) = 1V
(VWG is just my shorthand for “the voltage from
wiper to ground.”)

Yet another way of thinking about the voltage-
divider characteristics of a pot is this: The
output voltage at the wiper is proportional to
the position of the wiper as a portion of its
travel. In other words, in a circuit like the one at
the bottom of figure 1, when the pot is set for
50% of its travel, the voltage out is 50% of +V.

This applies only to linear pots; there are also
audio pots designed for volume controls whose
relationship of resistance to travel is warped to
match human hearing.

To summarize: Pots can be wired for variable
resistance or variable voltage. Variable voltage
is achieved by wiring the pot as a voltage

divider. With a linear pot, voltage divider output
is proportional to the wiper setting.

A Digital Pot. Pots are so handy that it was
inevitable that somebody would make a digital
version. Dallas Semiconductor offers the
DS1267 dual digital pot, shown in figure 2. It’s
available in three resistance ratings: 10k, 50k,
and 100k. Typical price in single quantity is $5.

The DS1267 is easy to connect to a Stamp via
its synchronous-serial interface. This is well-
plowed ground by now, since we’ve featured
quite a few serial devices (LTC1298 analog-to-
digital converter, MAX7219 LED driver, DS1620
thermometer) that use this kind of interface. To
recap, bits are sent one at a time on the DQ
(data) line. The CLK (clock) line is pulsed to tell
the receiving device when to grab the data bit.
Then the next bit is sent the same way until all
the bits the receiving device expects have been
sent. So many parts use this kind of interface
that the BS2 instruction set has it built right in.

So that’s how you communicate with the
DS1267; what do you say to it? Basically, you
tell it two 8-bit settings for the two pots. Those
values, 0 to 255, represent the wiper positions
relative to the legs of the pots. For example, if
you’re using a 100k DS1267, and you give pot 0
a setting of 100, the resistance between the
wiper and the lower leg of the pot will be
(100/255) * 100k = 39.22k.

DS1267

1

2

3

4

5

6

7

14

13

12

11

10

9

8

VB

H1

L1

W1

RST

CLK

GND

Vcc

SOUT

W0

H0

L0

COUT

DQ

+5

0.1µF

Stamp
Pins

Pot 1

Pot 0

0

1

2

Explanation of DS1267 Pins

VB: Substrate bias voltage. Usually grounded, but can be connected
to voltages as low as –5.5V for signals that go below ground

H0, H1: High end of pots 0 and 1

L0, L1: Low end of pots 0 and 1

W0, W1: Wiper of pots 0 and 1

RST: Reset pin; high to input new data, low to update pot settings

CLK: Clock to synchronize input of serial data

DQ: Serial data input

COUT: Cascade output; connect to next DS1267 DQ for daisychaining

SOUT: Stack output; common wiper output used when pots are stacked

Figure 2. DS1267 with hookup information for demo programs.

Stamp Applications no. 18, August 1996

3

There’s an additional bit in the DS1267
protocol that allows you to combine the two pots
into a single, larger one. That bit is called stack
select , and it simply determines which pot’s
wiper will be connected to the Sout pin. The idea
is that you connect the low leg of pot 1 to the
high leg of pot 0, and use Sout as the wiper
connection for the combined pot. Send both pots
identical 8-bit settings, and use the stack select
bit as a 9th data bit. Voila! You get a single pot
with double the rated resistance and twice the
resolution (512 resistance steps instead of 256).

Listings 1 and 2 are sample BS1 and BS2
programs that control the DS1267. They don’t
use the stacking feature, so they don’t bother
setting the stack-select bit to a particular state;
they just send one extra clock pulse to satisfy
the DS1267’s 17-bit protocol.

To demonstrate the DS1267, I wired its pots
as voltage dividers (low legs L1 and L0 to
ground; high legs H1 and H0 to +5 volts). I ran
the programs in listings 1 and 2 and watched
the wiper outputs on a digital oscilloscope. As
figure 3 shows, you can plainly see the voltage
climbing on one pot’s output and falling on the
other as their values are incremented and
decremented, respectively.

If you’re using a BS2 and you have an
oscilloscope handy, you can use this setup to get
a graphical look at the BS2’s integer sine
function. In listing 2, just replace the line
beginning with DSpot0 = ... with the following:
DSPot0 = SIN DSPot1 + 127

Adding 127 to the sine value is necessary
because the BS2 expresses sines as two’s
complement values with a range of ±127. (Two’s
complement is a way of representing negative
values in binary. When you add the two’s
complement of a number to another number, it
has the same effect as subtracting that number
from the other. See this month’s BASIC for
Beginners.) Figure 4 shows the sine output.

You can use the DS1267’s digital pots in
pretty much any circuit that employs a
mechanical pot. There are just a few limitations
to bear in mind:

• All pots have some wiper resistance—
additional resistance that looks like a resistor in
series with the wiper. In mechanical pots, this
resistance is generally too low to worry about. In
the DS1267, it can be as high as 1000 ohms.
This won’t affect a voltage-divider circuit,
provided that you keep current draw through
the pot to a minimum. But in a variable
resistance application, your minimum pot
setting may be as high as 1k.

• All pots have some limit as to the amount of
current they can handle safely. In the case of
the DS1267, the limit is pretty low; 1 mA. Make
sure that your circuit never draws more than
this amount of current through the DS1267, or
you risk damaging it.

• If the signal or voltage you plan to control
with the DS1267 can be negative with respect to
ground, you must connect the VB (bias) pin to a
supply that’s more negative; up to –7 volts.

pot 1

pot 0

Figure 3. Oscilloscope trace of listings 1 and 2.

pot 1

pot 0

Figure 4. Listing 2 modified for sine output.

Stamp Applications no. 18, August 1996

4

Other Digital Pot Applications. I could
probably devote a half-dozen columns to
potential applications for the DS1267, because
anywhere there’s a pot, there could be
Stamp/computer control. That’s a lot of territory.
The audio and electronic music possibilities
alone are mind-boggling. Not to mention
electronic control and calibration of analog
instruments, interfacing to conventional motor
controls, management of old-fashioned 555
timer circuits, creation of automated test
equipment, control of linear power supplies, etc.

BASIC for Beginners. The Stamps’ 16-bit
integers have a range of possible values of 0 to
65,535. They don’t support larger values,
decimal points, or negative numbers. That’s
what it says in the manual, and that’s what I
always say here.

But it’s not entirely true. Any computer that
can handle positive integers of a particular size
can also work with negative numbers.

Let’s start by defining a negative number.
They take about 10 pages to do this in a math
textbook, but I’m going to use a short and
convenient definition: A negative number is
what you get when you subtract the
corresponding positive number from zero. For
instance, –10 is the result of subtracting +10
from zero.

That definition is almost meaningless in
human terms, but really profound when you’re
working with computers. Try this: on a BS1, run
the following lines of code:

w1 = 0 - 10
debug "-10 is equal to: ",#w1,cr
w1 = 50 + w1
debug "50 + (-10) = ", #w1

The first debug instruction shows the number
65526, and the second one—the result of adding
50 and 65526—shows 40. So subtracting 10 from
0 gives us 65526, but adding 65526 to another
number has the same effect as subtracting 10.
Hey, adding 65526 works the same as –10!

Why does this work? Remember that the
Stamp uses a limited number of bits, in this case
16, to represent numbers. When you count up
and exceed the maximum number that the

available bits can hold, the value wraps around
to 0 and starts counting over. For example:
65533, 65534, 65535, 0, 1, 2... The same
wraparound occurs when you count down. 2, 1,
0, 65535, 65534, 65533...

You can regard addition and subtraction as
just special cases of counting up and down. To
subtract 10, just count down 10 times. Or, since
the numbers wrap around, you could count up
65,526 times to subtract 10. That’s the basis for
two’s complement negative numbers.

These numbers are called two’s complement
because of the other way of calculating them:
Take a number and invert the individual bits;
that is, change all 1s to 0s and 0s to 1s. That’s
called a complement, or a one’s complement.
Add one to the one’s complement, and you have
a two’s complement. The result is the same as
subtracting the same number from 0.

There are a couple of peculiarities in the two’s
complement system. The first is that a two’s
complement negative number is only sure to act
like a proper negative number within its
original bit size. For example, the 16-bit version
of –10 is 65526, but the 8-bit version is 246, and
the 32-bit version is 4,294,967,286. The
conversion is pretty easy; going from a larger bit
size to a smaller one just requires lopping off the
extra bits. This happens automatically when
you put a 16-bit value into an 8-bit variable in
PBASIC. Naturally, things fall apart if the 16-
bit negative number is larger than an 8-bit
variable can hold. The ranges of possible values
are:

Four bits (nibbles): ±7
Eight bits (bytes): ±127
Sixteen bits (words): ±32767

To convert in the other direction—to move an 8-
bit negative value into a 16-bit variable—you
must pad the resulting 16-bit number with 1s.
To do this properly, you must first determine
whether the number is negative. Technically, an
eight-bit two’s complement number is negative if
its most-significant bit is 1. In regular unsigned
math, that bit is 1 when a number is greater
than or equal to 128. If the 8-bit number is
negative, then its 16-bit equivalent must have
all of the upper 8 bits set to 1s. Here’s the code

Stamp Applications no. 18, August 1996

5

to convert an 8-bit, two’s complement number
into a 16-bit variable (PBASIC 1):

w1 = b2
if b2 <= 128 then skip
w1 = b2 | $FF00
skip: ' Program continues.

The other peculiarity of two’s complement is
that there’s always one outlaw value that is its
own two’s complement. This value has a 1 in the
leftmost bit, and 0s in all the lower bits; for
example, the 8-bit value 128 (%10000000
binary). What makes this value an outlaw is
this: subtract 128 from 0 in an 8-bit integer.
What do you get? Yep, 128. Obviously, we can’t
have a system in which +128 and –128 are
represented by the same number. So programs
that use two’s complement should be written to
regard these values as errors:

Four bits (nibbles): 4
Eight bits (bytes): 128
Sixteen bits (words): 32768

Although two’s complement gives you a way to
represent negative numbers in PBASIC,
remember that you have to adjust your
thinking. Comparison and math operations
assume positive integers, so two’s complement
values won’t always return the results you
expect. And the debug/serial output instructions
of the BS1 don’t automatically handle the minus

sign; you have to do that yourself. (The BS2 has
functions for displaying numbers in signed
decimal and hex formats.)

Sources

For more information on the BASIC Stamp,
contact Parallax Inc., 3805 Atherton Road no.
102, Rocklin, CA 95765; phone 916-624-8333;
fax 916-624-8003; BBS 916-624-7101; e-mail
info@parallaxinc.com; ftp.parallaxinc.com.

The DS1267 is available from Newark
Electronics, phone 312-907-5436. You may also
contact Dallas Semiconductor directly, phone
214-450-0448; fax 214-450-0470.

Send questions, suggestions, or requests for
future Stamp Applications to:
Scott Edwards Electronics, PO Box 160, Sierra
Vista, AZ 85636-0160; phone 520-459-4802; fax
520-459-0623; e-mail (via Compuserve) at
72037,2612; on the Internet 72037.2612 @
compuserve.com. Scott offers Stamp-related
products and kits, including:

The Counterfeit controller, a kit alternative to
the BASIC Stamp, is $29. Double- and quad-
speed options are $2 and $4, respectively. The
Counterfeit Development System, required to
program Counterfeits is $69 and includes a 150-
page manual, downloading cable kit, Parallax
software, and one Counterfeit controller kit.

Visa, Mastercard, American Express, and
Discover accepted. Personal checks and money
orders also welcome.

New contact information:

Scott Edwards Electronics, Inc.
2700 E. Fry Blvd. Suite A4
Sierra Vista, AZ 85635
ph: 520-459-4802; fax 520-459-0623

web: www.seetron.com
e-mail: scott@seetron.com

Stamp Applications no. 18, August 1996

6

Listing 1. DS1267 Demo Program for BS1

' Program: DS1267.BAS
' This program controls the DS1267 digital potentiometer chip.
' This chip is very versatile as a digital-to-analog converter.
' It can output a variable voltage, can adjust current (up to
' 1 mA), or it can serve as the variable resistance in a
' resistor-capacitor timing circuit such as a timer or oscillator.

' Hardware interface with the DS1267:

SYMBOL RST = 0 ' Pin number of reset connection.
SYMBOL CLK = 1 ' Pin number of clock connection.
SYMBOL DQ_n = 2 ' Pin number of data (DQ) connection.
SYMBOL DQ = pin2 ' Pin variable of data connection.

' Variables used by the program:
SYMBOL DSpot0 = b2 ' Variable for setting of pot 0.
SYMBOL DSpot1 = b3 ' Variable for setting of pot 1.
SYMBOL DSpots = w1 ' Word variable holding both pot values.
SYMBOL DSxfer = w0 ' Word variable for transferring pot values.
SYMBOL clocks = b4 ' Index variable for counting clock pulses.

let dirs = %00000111 ' Output pins 0,1,2 to DS1267.
' The loop below increments pot 1 in 10-unit steps from 0 to 255.
' by subtracting pot 1 value from 0 and writing that to pot 0,
' it makes pot 0 the inverse of pot 1. In other words, as pot 1
' increases, pot 0 decreases.
Begin:
for DSpot1 = 0 to 255 step 10 ' Pot 1 increasing: 0 to 255.
 let DSPot0 = 0 - DSPot1 ' Pot 0 decreasing.
 let DSxfer = DSpots ' Store data in transfer variable.
 gosub outPot ' Send to the pots.
next ' Next value for pots.
goto Begin ' Repeat endlessly.

Stamp Applications no. 18, August 1996

7

'====================DS1267 SUBROUTINE=====================
' This code shifts data out to the DS1267. Because the shift
' process causes the data to be lost, we use a copy of the
' data to perform the transfer (DSxfer). The DS1267 expects
' a total of 17 bits: first the stack-select bit, which
' selects wiper 0 or wiper 1 for connection to Sout; then
' 16 bits representing the 8-bit values of pots 1 and 0,
' most-significant bit (msb) first.
outPot:
high RST ' Take RST high to start transfer.
low DQ_n ' Set stack-wiper to 0.
pulsout CLK,10 ' Pulse the clock line.
for clocks = 0 to 15 ' Now send 16 data bits.
 let DQ = bit15 ' Put msb on data line.
 pulsout CLK,1 ' Pulse the clock
 let DSxfer = DSxfer * 2 ' Shift 1 bit to the left.
next ' Repeat for all 16 bits.
low RST ' Take RST low to finish transfer.
return ' Return to program.

Stamp Applications no. 18, August 1996

8

Listing 2. DS1267 Demo Program for BS2

' Program: DS1267.BS2
' This program controls the DS1267 digital potentiometer chip.
' This chip is very versatile as a digital-to-analog converter.
' It can output a variable voltage, can adjust current (up to
' 1 mA), or it can serve as the variable resistance in a
' resistor-capacitor timing circuit such as a timer or oscillator.

' Hardware interface with the DS1267:

RST con 0 ' Pin number of reset connection.
CLK con 1 ' Pin number of clock connection.
DQ_n con 2 ' Pin number of data (DQ) connection.

' Variables used by the program:
DSpots var word ' Word variable holding pot values.
DSpot0 var DSPots.lowbyte ' Variable for setting of pot 0.
DSpot1 var DSPots.highbyte ' Variable for setting of pot 1.

DIRA = %0111 ' Output pins 0,1,2 to DS1267.

' The loop below increments pot 1 in 10-unit steps from 0 to 255.
' by subtracting pot 1 value from 0 and writing that to pot 0,
' it makes pot 0 the inverse of pot 1. In other words, as pot 1
' increases, pot 0 decreases.
Begin:
for DSpot1 = 0 to 255 step 10 ' Pot 1 increasing: 0 to 255.
 DSPot0 = 0 - DSPot1 ' Pot 0 decreasing.
 gosub outPot
next ' Next value for pots.
goto Begin ' Repeat endlessly.

'====================DS1267 SUBROUTINE=====================
' This code shifts data out to the DS1267. Since it uses
' the Shiftout instruction, which does not alter the variable
' being shifted, we don't have to make a copy of the pot data.
outPot:
 high RST ' Take RST high to start transfer.
 pulsout CLK,1 ' Pulse for stack-select bit (don't care).
 Shiftout DQ_n,CLK,msbfirst,[DSpots\16] ' Shift out pot values.
 low RST ' Take RST high to end transfer.
return

