
Stamp Applications no. 15 (May ’96):

Understanding the RCtime Instruction
and Creating Strings in EEPROM

BS2 Programming Hints
by Scott Edwards

TWO BS2-RELATED TOPICS keep coming up
lately; how to use the RCtime instruction, and
how to store and manipulate text strings.

So this month I’ll explain the electronic
underpinnings of RCtime; show a couple of
methods of storing and retrieving EEPROM
strings; and continue the BASIC-for-beginners
series with systems of numbers.

RCtime. It’s great that the Stamps have
attracted so much interest from people with
little background in electronics or programming.
And it’s remarkable how much non-techies can
accomplish by following recipes like the ones I
present here.

But sometimes I think that these folks are
shortchanging themselves by failing to learn the
fundamentals. A case in point is the widespread
misunderstanding of the new RCtime

instruction—most everything you could want to
know about RCtime is taught in the first five
weeks of Electronics 101.

To prove it, I hauled my old textbook and
applied it to RCtime with gratifying results.

Let me start with a little background: RCtime
is the BS2’s counterpart to the BS1’s Pot
instruction. The purpose of both instructions is
to measure a resistance by seeing how long it
takes to charge or discharge a capacitor through
that resistance. That’s where the similarity
ends.

Pot takes an active approach to this
measurement. It charges the cap to +5V, then
enters a loop, discharging the cap a little at a
time with each loop. It does this by placing the
pin into an output-low state briefly, then back
into input mode to see whether the capacitor is
still charged.

10-ms charging time

Spikes are caused by
Pot instruction
discharging the cap
in short bursts

1.5V

5V

16.6-ms discharge time
(varies with R, C)

Loop: pot 0,100,b2
 debug b2
 goto Loop

pin0

R

C

8.8k
(example)

0.1µF
(example)

Hookup Example Code

use pin0

scale factor

variable

Figures 1 and 2. Pot hookup diagram/example code (left) and storage-oscilloscope trace (right).

Stamp Applications no. 15, May 1996

2

Pot counts the number of loops required for
the charge on the capacitor to change from 1 (>
1.5V) to 0 (< 1.5 V).

Pot’s loop count can run as high as 65,535
(max value of a 16-bit number), but is scaled to
fit within an 8-bit variable (0 to 255) using a
factor supplied by your program. The BS1 host
program STAMP.EXE includes a routine for
determining this scale factor, in essence
calibrating the Pot command for variations in
capacitor value and resistance range.

Figure 1 shows a standard connection for the
Pot instruction, while figure 2 is a storage-
oscilloscope record of Pot in action. The
downward spikes along the discharge curve are
the brief output-low states of the Pot pin.

RCtime works in a different way, inside and
out. Figure 3 shows a typical hookup. RCtime
relies on your program to set the capacitor’s
initial state; in the case of figure 3, you would
briefly output a high on the RCtime pin. It’s
confusing, but this would discharge the
capacitor by placing both of its leads at the same
potential, +5V.

When the RCtime instruction executes, it puts
the specified pin into input mode and merely
waits for the capacitor to charge through the pot
or unknown resistance. This charging action is
seen as the voltage at the lower, I/O-pin end of
the cap getting closer to ground. All the while,
RCtime is counting up at 2-microsecond (µs)
intervals. When the voltage at the lower pin of
the cap falls below 1.5 V, the input seen by the
RCtime pin changes from a 1 to a 0 and the
counting stops. RCtime returns the 16-bit count
in the variable specified in the instruction.

Figure 4 is a storage-scope trace of RCtime in
action. Remember, although the trace looks like
a capacitor-discharge curve because the
measured voltage is dropping over time, the
capacitor is actually charging. We’re just
measuring it from underneath, so to speak.

RCtime leaves a lot of design details to the
user—the most important being: for a given
combination of resistor and capacitor, what
value will the instruction return? That’s where
Electronics 101 comes in.

When a capacitor charges or discharges
through a resistor, it follows an exponential
curve, like the ’scope pictures of figures 2 and 4.
Initially, the cap charges or discharges quickly,
then tapers off. Although curves like this are
usually accompanied by some awful math,
there’s a simple formula for determining how
long a given resistor/capacitor combination will
take to charge or discharge to the 63-percent
point. This value is called the time constant, and
it’s often symbolized by the Greek letter tau (τ).
The formula is:

τ = R x C

For example, the time constant for a 10k
resistor and a 0.1µF capacitor:

τ = (10 x 103) x (0.1 x 10-6) = 1 x 10-3

If you were charging a capacitor from 0V to 5V it
would reach 63 percent of 5V (3.15V) in 1
millisecond. If you were discharging that same
RC combination from 5V to 0V, it would hit 63-
percent discharged (or 37-percent charged;
1.85V) in 1 millisecond.

 RCtime 0,1,RC
 debug RC
 goto Loop

P0

R

C

8.8k
(example)

0.1µF
(example)

Hookup Example Code

use pin0

pin’s initial state

variable

+5V

220

RC var word

Loop: high 0
 pause 1

1-ms charging time
(high 0: pause 1)

5V

1.5V

1.2-ms discharge time
(varies with R, C)

Figures 3 and 4. RCtime hookup diagram/example code (left) and storage-oscilloscope trace (right).

Stamp Applications no. 15, May 1996

3

For the RCtime instruction, what we really
want to know is how long it will take for the
capacitor voltage to go from 5V to 1.5V. See,
1.5V is the logic threshold , the point below
which a BS2 pin reads 0 and above which it
reads 1. It is therefore the trip point at which
the RCtime instruction stops counting.
Calculating how long it will take for a given RC
combination to reach this point is just another
textbook formula:

time = −τ ln

vfinal

vinitial

In the formula above, the symbol ln means
natural logarithm; it’s a key found on most
scientific calculators. Let’s see how long it would
take for our 10k resistor and 0.1µF capacitor to
go from 5V to the logic threshold of 1.5V:

time = −1× 10−3 ln

1.5
5.0

= 1.204 × 10−3

About 1.2 milliseconds after RCtime begins, the
voltage at the lower leg of the capacitor will hit
1.5V, and RCtime will return with a count of 2µs
units in its variable. Since 1.204 milliseconds is
1204µs, that count would be 602 in 2µs units.

Since RCtime always goes from 5V to 1.5V
(when configured as shown in the manual), and
always works in 2µs units, we can derive an
easy-to-remember version of the formula that
can tell us how many units RCtime should
return for any given combination of R and C:

RCtime units = 600 x 103 x R x C
OR

RCtime units = 600 x R (in kΩ) x C (in µF)

A few final notes about Pot and RCtime are in
order. First, you may be wondering why
Parallax changed this function so radically. It
has to do with timing. The BS1’s internal clock
runs at 4 MHz, and it measures time in units of
10µs. If Pot worked like RCtime, the BS1 could
only count to 120 in the 1.2 ms it takes for a
0.1µF cap to discharge through a 10k resistor.
By discharging the cap in small sips, Pot
extends the discharge time, allowing it to count
much higher.

This also means that Pot takes much longer to

execute for a given combination of R and C. The
measurements shown in figures 2 and 4 used
the same resistor (a pot set to 8.8k) and
capacitor (0.1µF, 5-percent tolerance). The BS1
took 26.8 ms overall to make the measurement;
the BS2, just 2.54 ms. Both of those figures
include pre-measurement charging time.

Another difference between the instructions is
that RCtime is fairly linear in its response,
while Pot is not. For example, if RCtime returns
a count of 100 for a 2k resistance, you can
predict that it will return approximately 200 for
4k. Its response becomes less linear with very
short time constants due to the increased
significance of the time required for the
instruction to begin its measurement loop.

The BS1’s Pot instruction is slightly
nonlinear. Check out application note no. 7 in
either the Parallax BS1 series or in the
Counterfeit Development System manual. A
graph of Pot readings versus resistance shows a
noticeable curve.

This difference in response is why you can’t
just adapt the program from that BS1 app note
to work with the BS2. You have to go back to the
beginning of the process described in the app
note and generate a new power-series equation
to match the combined characteristics of the
BS2 and thermistor.

In figure 3 you may have noticed that I used a
larger value resistance in series with the I/O pin
than shown in the Parallax manual. They say 10
ohms; I use 220. The purpose of this resistor is
to protect the BS2 I/O pin from being damaged
when the value of R is near 0 ohms and the pin
is output high. This amounts to a short circuit
from +5V to ground through the I/O pin.

A 10-ohm resistor will limit this short-circuit
current to 500 mA. (The current would actually
be less, due to the on-resistance of the I/O pin
itself, but you get the idea.) That current is 25
times the rated 20-mA maximum for a Stamp
I/O pin! Since the time that the pin is output
high is supposed to be brief (about 1 ms), the pin
should not be harmed. The advantage of using
such a small resistance is that it ensures that
the capacitor will be fully charged very quickly.

My logic in using a 220-ohm resistor, which
would hold the short-circuit current to just 23

Stamp Applications no. 15, May 1996

4

mA, is that it’s foolhardy to rely on a program
being completely free of bugs in order to prevent
damage to an expensive component like the
BS2-IC. How does this choice affect the charging
time of the capacitor? Electronics 101 says that
a capacitor is 98 percent charged in four time
constants: 4 x R x C. With a 220-ohm resistor
and a 0.1µF capacitor, that’s:

Charge time = 4 x 220 x (0.1 x 10-6) = 22 x 10-6

The capacitor is almost completely charged in
22µs—far, far less than the 1 ms allotted by the
program.

Finally, keep in mind that RCtime is actually
more of a general-purpose timing instruction
than its name implies. All it really does is
change a selected pin to input and count the
number of 2µs intervals while that pin remains
in a specified state (1 or 0). In this way, it’s
much like the PBASIC instruction Pulsin,
except that it doesn’t wait for an initial edge to
start counting.

This can be very handy. Take BS1 application
note no. 12, Sonar Rangefinding (also found in
the Counterfeit manual). That application uses
Pulsin to measure the time required for an
ultrasonic pulse to travel out to some reflective
object and back in order to measure the
distance. To give Pulsin a complete pulse to
measure, the application requires that the
ultrasonic receiver be positioned so that it can
hear the ultrasonic transmitter. Using RCtime
would make this trick unnecessary.

Strings in EEPROM. The BS2’s Serout and
Debug instructions include all kinds of options,
including one for outputting two different styles
of strings from RAM. A string is a sequence of
bytes—frequently a snippet of text.

When I saw these RAM-string options in the
BS2 manual, I assumed that there were
complementary ones for EEPROM strings. After
all, the manual makes a big show out of the
simple and elegant way you can use the DATA
statement to stuff all kinds of goodies, including
strings, into EEPROM.

Unfortunately, there isn’t a correspondingly
elegant way to get those strings back out.

We’ll fix that. Listings 1 and 2 present a
couple of BASIC subroutines that make up for
the missing EEPROM string options, and show
the difference between the ways that BASIC
and C store strings.

In BASIC, a string begins with a length byte
containing a count of the number of characters
(bytes) in the string. This lets BASIC’s LEN()
function quickly determine string length—all it
does is read that first byte.

In C, a string begins with the first byte of the
string itself, and ends with a byte containing 0,
also known as an ASCII null. As you’ll see from
listing 2, this makes the code to read this kind of
string faster and saves one variable used as a
counter.

Both approaches can accommodate an empty
string, and both would express it in the same
way: a single byte containing 0.

Writing BASIC code to read out these strings
is an imperfect solution. Both the BASIC and C
string routines take 2 ms or more to fetch each
byte of a string. This means that no matter how
fast a serial data rate you use, you’ll never get
more throughput (actual number of bytes/second
sent) than a 4800-baud data stream.

If this turned out to be a real problem in an
application, and if all of the strings were short,
you could transfer them from EEPROM to RAM,
then send them. It would take the same amount
of time overall, but reduce the time that the BS2
tied up the serial link.

I’ve lobbied Parallax to add EEPROM-string
capabilities to future revisions of the PBASIC-2
firmware.

BASIC for Beginners. For several columns
I’ve been talking about Boolean logic and its
applications in IF/THEN decisions and bit
manipulations. Throughout this discussion, I
have deliberately skirted the issue of numbering
systems.

Our experiences with the logic operators
demonstrated why it’s sometimes necessary to
write numbers out in a way that lets you
examine individual bits: It’s the only way to
quickly grasp the effects of the Boolean
operators.

Without further ado, let’s look at the

Stamp Applications no. 15, May 1996

5

numbering systems supported by PBASIC.

Decimal. This is our everyday numbering
system, also known as “base 10.” Although it
hardly needs further explanation, examining the
familiar decimal system in detail will give us a
better handle on the other systems.

The decimal system has 10 symbols: 0, 1, 2, 3,
4, 5, 6, 7, 8, 9. Therefore, a single decimal digit
can represent a range of 10 values, 0 through 9,
depending on which of the symbols it holds.

To represent numbers larger than 9 in
decimal, we tack on additional digits to the left.
For example, when counting upward, we say, “0,
1, 2, 3....9, 10, 11...” It’s probably been a long
time since you gave that sequence any thought,
but think about it now: When you count past the
largest number that you can represent in a digit
(9), you reset that digit to 0, and increase the
next digit to the left by 1. You then continue
counting, as before, in the lowest digit, until it
once again exceeds the largest number symbol.

Each digit in the decimal system expresses a
number multiplied by a power of 10. Yup, even
the ones place is really a multiple of a power of
10—10 to the zero power (100). Remember that
any number raised to the power of 0 is equal to
1. This fact will be important later.

Here’s a quick analysis of a three-digit
decimal number, 172:

Digits: 1 7 2
Value: 1 x 102 7 x 101 2 x 100

A quick summary of the decimal system:

• The root of decimal, deci- , means 10.
• The decimal system has 10 symbols, capable

of representing values from 0 to 9.
• Digits of decimal numbers have values

based on their positions in the number. Each
digit represents a value 0 through 9, multiplied
by a power of 10.

Binary. We can figure out a lot about the binary
system (aka “base 2”) by making a few quick
changes to the summary of the decimal system
above:

• The root of binary, bi- , means 2.
• The binary system has 2 symbols, 0 and 1.
• Digits of binary numbers have values based

on their positions in the number. Each digit
represents a value of 0 or 1, multiplied by a
power of 2.

Binary digits are called bits, derived from binary
digit .

Binary is the number system of digital circuits
and computers. The reason is the ease with
which electronic circuits can produce, sense and
store two discrete voltages representing 0 and 1.
Normally a 0 is a low voltage, close to 0V, and a
1 by a high voltage, close to the system power
supply (often 5V as in the Stamps).

Counting in binary works just like decimal,
but new digits pile up faster. For example, a
four-digit decimal number can represent values
to 9999, while a four-digit binary number maxes
out at binary 1111, the equivalent of decimal 15.
Here’s how you would count from 0 to 1111 in
binary. Note that it follows the counting rules
we reviewed in decimal above.

binary decimal binary decimal
0000 0 1000 8
0001 1 1001 9
0010 2 1010 10
0011 3 1011 11
0100 4 1100 12
0101 5 1101 13
0110 6 1110 14
0111 7 1111 15

When writing binary numbers, it’s necessary to
label them as binary. Otherwise, they can be
confused with decimal numbers by people or
programs. In the example above, 1111 could be
mistaken for “one thousand, one hundred and
eleven” if we didn’t label it in some way.
PBASIC uses a percent sign in front of a binary
number: %1111 is binary; 1111 is decimal.

Because binary is so often associated with
computers, we often refer to standard-sized
groups of bits corresponding to the physical or
operational capacity of the circuit or computer.
The best-known of these is the byte—a group of
eight bits. PBASIC runs on a controller that
processes data in bytes, but through clever
programming it also allows you to manipulate
16-bit words, or individual bits. PBASIC2 (the
BS2 flavor) also supports processing of nybbles ,
the play-on-words name for groups of four bits,

Stamp Applications no. 15, May 1996

6

and the basis of the hexadecimal numbering
system that we’ll look at next. Before we do, let’s
analyze a typical binary number, %1011:

Digits: 1 0 1 1
Value: 1 x 23 0 x 22 1 x 21 1 x 20

In case those powers of 2 are not on the tip of
your tongue, 20 is 1 (as any number raised to the
zero power); 21 is 2; 22 is 4; and 23 is 8.

Hexadecimal. Our next numbering system,
which is also known as hex or “base 16,” serves
as a kind of shorthand for representing binary
numbers. In summary:

• The roots of hexadecimal: hex- means 6, and
deci- means 10; combined, they mean 16.

• The hexadecimal system has 16 symbols,
consisting of 0 through 9 (as in decimal) and A,
B, C, D, E and F, representing the decimal
values 10 through 15.

• Digits of hex numbers have values based on
their positions in the number. Each digit
represents a value of 0 through 15, multiplied
by a power of 16.

Hex digits correspond to four bits, so they may
be referred to as nybbles, or simply as hex
digits.

Hex is handy for representing binary numbers
in a compact way, since each digit corresponds
neatly to exactly four bits. If you can memorize
the binary equivalents of the hex counting
sequence from 0 to F, you can convert any hex
number to binary by merely substituting the
corresponding four bits for each hex digit. Here
are the first 18 hex numbers:

hex decimal hex decimal
0 0 9 9
1 1 A 10
2 2 B 11
3 3 C 12
4 4 D 13
5 5 E 14
6 6 F 15
7 7 10 16
8 8 11 17

Since hex numbers can look like decimal ones,
PBASIC uses the dollar-sign symbol ($) to label

them. The hex equivalent of decimal 30 would
be $1E in PBASIC.

Here’s an analysis of a three-digit hex
number, $A3F:

Digits: A 3 F
Value: 10 x 162 3 x 161 15 x 160

To work out the decimal equivalent, just do the
math and add the answers. I’ll help by
supplying the powers of 16: 160 = 1; 161 = 16;
and 162 = 256. (Answer: 2623)

Wrapup. You’ll encounter those three
numbering systems often in reading PBASIC
code here and elsewhere, so it pays to get
comfortable with them. If you don’t already have
one, consider getting a calculator that has
computer-math conversions built in, like the
popular and inexpensive HP20S.

Next time, we’ll take a look at how bytes are
used to represent text in the ASCII (asskey)
system of symbols. If you’re planning to use
PBASIC’s serial communication capabilities, an
understanding of ASCII is a must.

Sources

For more information on the BASIC Stamp,
contact Parallax Inc., 3805 Atherton Road no.
102, Rocklin, CA 95765; phone 916-624-8333;
fax 916-624-8003; BBS 916-624-7101; e-mail
info@parallaxinc.com.

Send questions, suggestions, or requests for
future Stamp Applications to:
Scott Edwards Electronics, PO Box 160, Sierra
Vista, AZ 85636-0160; phone 520-459-4802; fax
520-459-0623; e-mail (via Compuserve) at
72037,2612; on the Internet 72037.2612 @
compuserve.com. Scott offers Stamp-related
products and kits, including:

The Counterfeit controller, a kit alternative to
the BASIC Stamp, is $29. Double- and quad-
speed options are $2 and $4, respectively. The
Counterfeit Development System, required to
program Counterfeits is $69 and includes a 150-
page manual, downloading cable kit, Parallax
software, and one Counterfeit controller kit.

Visa, Mastercard, and American Express
accepted for phone/fax orders. Personal checks
and money orders are welcome for mail orders.

New contact information: Scott Edwards Electronics, Inc. 2700 E. Fry Blvd. Suite A4Sierra Vista, AZ 85635ph: 520-459-4802; fax 520-459-0623web: www.seetron.come-mail: scott@seetron.com

Stamp Applications no. 15, May 1996

7

Listing 1. BASIC-Style Strings for the BS2

' Program: BSTRING.BS2 (Demo of BASIC-style counted strings in EEPROM)
' This program shows how to use the DATA statement to store counted
' strings in EEPROM, and how to retrieve these strings for serial
' transmission.

' Define constants for serial communication with the PC through
' the built-in serial connector at 9600 baud. Note that this is
' compatible with the debug window--if the window is on the
' screen, sending data to the built-in connector at 9600 baud
' will display it. The debug window doesn't even care whether the
' serial data is inverted or not! This provides a handy check of
' serial comms without leaving the STAMP2.EXE host software.

builtIn con 16 ' Pin number for built-in serial connector.
baud con 84 ' Baudmode constant for 9600, non-inverted.

' BASIC strings begin with a byte value (0 to 255) that specifies the
' number of characters in the string, followed by the characters
' themselves. In PBASIC-2, this translates to DATA statements that
' look like this:

' ADDRESS LENGTH STRING DATA
' CONSTANT (BYTES) (ASCII CHARACTERS)
' ---
 title DATA 19, ">>> HELLO DOLLY <<<"
 phrase1 DATA 12, "Hello, Dolly"
 phrase2 DATA 17, "Well hello, Dolly"
 phrase3 DATA 29, "It's so nice to have you back"
 phrase4 DATA 16, "where you belong"

' The subroutine that gets BASIC-style strings requires a variable to
' count out the bytes of the string as it fetches them. Since we're
' using a single byte to specify length, strings can't be longer than
' 256 characters. We're using a word variable for strCnt, since it
' will also be used to specify the ending address of the string,
' which can range from 0 to 2047.

strCnt var word ' Counter for stringOut.
char var byte ' Character (byte) to send via Serout.
strAddr var word ' Base address of the string.
i var nib ' Small (0-15) counter for part 2 of demo.

Stamp Applications no. 15, May 1996

8

' Our demonstration program will retrieve the strings one at a time
' and print them to the debug screen on the PC. A subroutine handles the
' details of getting the bytes and feeding them to serout.
demo:
 debug cls ' Open a clear debug window.
 strAddr = title ' Specify which string
 gosub stringOut ' and display it in debug window.

 pause 2000 ' Take a 2-second intermission.

' Now we'll run through the strings in order, courtesy of a lookup
' table containing their addresses.
 for i = 0 to 3 ' For each of 4 phrases.
 serout builtIn,baud,[cls] ' Clear the screen.
 lookup i,[phrase1,phrase2,phrase3,phrase4],strAddr ' Get a phrase.
 gosub stringOut ' Send to screen.
 pause 1000 ' Time to read phrase.
 next ' Next phrase until done.

STOP ' End of program.

' ===
' Here's the subroutine that reads strings. To use it, place the
' address of the string, assigned by its DATA statement, into
' the variable strAddr. Note that the first line of this routine,
' "read strAddr,strCnt", is equivalent to the BASIC LEN function,
' which returns the length of a string. This is the primary advantage
' of BASIC strings--the ease with which you can retrieve length info.
stringOut:
 read strAddr,strCnt ' Get the number of bytes in the string.
 strCnt = strCnt + strAddr ' Set the endpoint of the string.
 for strAddr=strAddr to strCnt ' For each byte of the string:
 read strAddr,char ' put the byte into char
 serout builtIn,baud,[char] ' and send it out the port.
 next ' Until all bytes are sent.
return

Stamp Applications no. 15, May 1996

9

Listing 2. C-Style Strings for the BS2

' Program: CSTRING.BS2 (C-style null-terminated strings in EEPROM)
' This program shows how to use the DATA statement to store C-style
' strings in EEPROM, and how to retrieve these strings for serial
' transmission.

' Define constants for serial communication with the PC through
' the built-in serial connector at 9600 baud.

builtIn con 16 ' Pin number for built-in serial connector.
baud con 84 ' Baudmode constant for 9600, non-inverted.

' C strings end with an end-of string marker: a byte containing 0,
' also called a "null" or "ASCII null." You can store such strings
' in EEPROM like so:

' ADDRESS STRING DATA
' CONSTANT (ASCII CHARACTERS) NULL
' ---
 title DATA ">>> HELLO DOLLY <<<", 0
 phrase1 DATA "Hello, Dolly", 0
 phrase2 DATA "Well hello, Dolly", 0
 phrase3 DATA "It's so nice to have you back", 0
 phrase4 DATA "where you belong", 0

' The subroutine that gets C-style strings requires one less word
' variable than its BASIC counterpart.
char var byte ' Character (byte) to send via Serout.
strAddr var word ' Base address of the string.
i var nib ' Small (0-15) counter for part 2 of demo.

' Our demonstration program will retrieve the strings one at a time
' and print them to the debug screen on the PC. A subroutine handles the
' details of getting the bytes and feeding them to serout.
demo:
 debug cls ' Open a clear debug window.
 strAddr = title ' Specify which string
 gosub stringOut ' and display it in debug window.

 pause 2000 ' Take a 2-second intermission.

' Now we'll run through the strings in order, courtesy of a lookup
' table containing their addresses.
 for i = 0 to 3 ' For each of 4 phrases.
 serout builtIn,baud,[cls] ' Clear the screen.
 lookup i,[phrase1,phrase2,phrase3,phrase4],strAddr ' Get a phrase.
 gosub stringOut ' Send to screen.

Stamp Applications no. 15, May 1996

10

 pause 1000 ' Time to read phrase.
 next ' Next phrase until done.

STOP ' End of program.

' ===
' Here's the subroutine that reads C strings. To use it, place the
' address of the string, assigned by its DATA statement, into
' the variable strAddr.
stringOut:
 read strAddr,char ' Get the character.
 if char <> 0 then continue ' If char is 0, then return
return
continue: ' else continue
 serout builtIn,baud,[char] ' and send char out the port.
 strAddr = strAddr+1 ' Point to next character in string.
goto stringOut ' Repeat until char = 0.

