
Stamp Applications no. 13 (March ’96):

When Good Luck is not Enough:
Watchdogs and Error Recovery

Catching and Correcting Operating Errors
And a few Bits of Boolean Logic,
by Scott Edwards

THIS is the thirteenth installment of Stamp
Applications , so it’s a perfect opportunity to talk
about bad luck. In the microcontroller world,
misfortune can take the form of garbled
communications, power glitches, software bugs,
hardware malfunctions, stuck motors, bad
solder joints, electrostatic zaps, crazed users,
and unread user’s manuals. Some of these we
can prevent; some we can control; and some we
can neither prevent nor control, but only worry
about.

We’ll start our exploration of bad luck with a
class of applications known as “watchdogs.”
These are circuits that monitor computers or
processes for a telltale sign of proper operation.
If they don’t find it, they attempt to fix the
problem, or to notify someone who can. A
watchdog can restart a stuck PC, cut power to a
stalled motor, or signal a technician for help.

I’ll also show you how to use the BS2’s serial
timeout feature to resend data if a peripheral (or
other BS2) doesn’t respond within a reasonable
amount of time. And since unexpected resets are
often a symptom of hardware problems, I’ll
demonstrate a simple method of detecting them.

Watchdog Timer. Many microcontrollers,
including the PBASIC interpreter chip used in
the Stamp and Counterfeit, include a watchdog
timer. This is a circuit that periodically

increments (adds 1 to) a counter. When the
counter is full and increments one more time, it
overflows. This causes the PBASIC chip to reset,
almost as if the reset button were pushed. (I say
almost, because the chip can tell the difference
between a watchdog reset and a hardware
reset.)

The chip itself has no control over the
watchdog timer. It cannot stop it from
incrementing the counter. But it can clear that
counter to 0, making the watchdog start all over
in its march toward a reset.

If the chip resets the timer to 0 often enough,
the watchdog reset never occurs.

What good is this? Let’s take an example from
desktop computers. With just a glance at the
instructions, you install the latest software on
your PC. You fire it up, and a program screen
appears. So far, so good. Then... nothing. Press a
key, move the mouse; nothing. Your PC is locked
up. Sigh. Press CNTRL-ALT-DELETE to reset
and try again.

In many control applications, there may not be
a human standing by to decide when a program
is locked up, so a watchdog timer serves the
same purpose. The program is written in such a
way that normal operation prevents the
watchdog timer reset—but if the controller
starts operating abnormally and forgets to clear
the counter, the watchdog resets it.

Stamp Applications no. 13, March 1996

2

Rotating Shaft

Hall-effect
Switch

(UGN3113)

Output

+5V

Magnet (*End-
magnetized)

*To avoid affecting the balance of the shaft, use a button magnet that is
magnetized across its width and mount it coaxially on the end of the shaft. The
Hall-effect switch will turn on whenever the correct pole lines up with it.

0 = magnet aligned
1 = no magnet

10k

N

S

‘End’ magnetized.

N S

‘Width’ magnetized.

Magnet types Hall switch pinout

+ open-collector
output

Figure 1. A PBASIC watchdog timer can monitor a motor via a Hall-effect switch like this.

PBASIC handles all the details of its own
watchdog timer automatically, so you don’t have
to worry about it. But it can be useful to mimic
the operation of the watchdog in your own
programs.

For example, a reader asked me how to
monitor a motor to ensure that it wasn’t stalled.
I suggested the watchdog approach illustrated
in listing 1.

The program is set up as a big loop. Each trip
through the loop PBASIC checks an input from
a switch that is periodically pulsed by the
rotation of the motor. Figure 1 shows a suitable
magnetic-switch arrangement.

When the Button instruction detects a switch
closure, the program clears the watchdog
counter. Otherwise, the program increments the
watchdog counter. If the watchdog counter
exceeds a preset value (determined by trial
runs), the program judges that the motor is
stalled, and hollers for help. The program in
listing 1 expects at least 1 pulse per second to
prevent the watchdog from barking.

Other readers report using a similar method
to monitor and reset PCs used in remote

locations. They program the PC to periodically
pulse an output line, such as one of the bits of
the parallel port. Or they tap into the hard-drive
activity light, if the application that’s running
uses the hard drive on a regular basis. The
Stamp or Counterfeit monitors the pulse output.
If no pulse arrives within before the watchdog
counter reaches the maximum value set by the
program, the Stamp or Counterfeit resets the
PC, either by closing a relay across the reset
button, or by opening a relay between the PC
and its ac power source. (The latter approach
seems a bit brutal to me, but reports from the
field are that it’s effective.)

Serial Retry. The BASIC Stamp 2 (BS2) has
many new instructions and improvements to
existing instructions. One such improvement is
the addition of a timeout feature to the serial-
input instruction Serin. It allows you to specify
a number of milliseconds (up to 65535; over a
minute) for the Stamp to wait for serial data. If
the data doesn’t arrive within that time, the
program goes to a routine that you specify.

So, where the older Stamp could get stuck

Stamp Applications no. 13, March 1996

3

waiting for serial input, the new one can unstick
itself.

At first blush, I didn’t see this feature as being
terribly useful, since it addresses a symptom
rather than the underlying problem. A corollary
to Murphy’s Law says that if you give up
waiting for data now, the data you expected will
arrive one millisecond later!

However, there’s a common, real-world
situation in which the serial timeout can be
helpful. In two-way conversations between the
BS2 and a serial peripheral or other Stamp, the
timeout can provide a way to resend an
instruction if the peripheral doesn’t respond.

For example, take the Stamp Stretcher 1B.
This board lets a BS1 or BS2 access 16
additional I/O lines through a 1-wire serial
hookup at 2400 or 9600 baud. It also has a
single-channel, eight-bit analog-to-digital
converter (ADC).

To use the ADC, the Stamp sends the
instruction “A” to the Stretcher with Serout,
then waits for a response with Serin. Fine and
dandy, unless the serial transmission got
garbled and was received as something other
than “A.” The Stretcher is programmed to ignore
characters that aren’t in its command set, so the
Stamp could end up waiting for a reply that isn’t
going to come.

If the garble was caused by some noise on the
serial line, then it makes sense to try again by
resending the instruction. Listing 2 shows how.

The retry loop of listing 2 offers all sorts of
opportunities for customization. You could add a
counter to the loop that would try three times,
then flash an error light. Or continue the
program without the analog data. Or connect to
a modem and send a message to a human
maintenance technician.

That last one brings up a good point—the
serial-retry concept would be especially useful in
dealing with error-prone communications over
the phone line. If you wrote a program to
interact with a remote computer, online service
or bulletin-board system, chances are good that
the connection would eventually fail. The serial
timeout would allow the BS2 to try again later.

Reset Lockout. Many different hardware

problems can cause unintended resets of the
PBASIC chip. Any glitch that takes the 5-volt
power supply lower than 4 volts, even for a
fraction of a second, can cause a reset. Voltage
transients that disrupt the relationship of
ground to the +5-volt rail, or that put noise on
the reset line, can also reset the chip. Of course,
a curious finger poking the reset button will do
it every time!

There are lots of applications in which you
want to prevent the Stamp from resetting,
because a reset would disrupt a process,
reinitialize variables, or cause the loss of data.
Elsewhere in this issue is my BS2 Data
Collection Proto Board. I set it up to gather data
on battery voltage and ambient temperature to
get a general idea about battery longevity and
generate sample data for the article. If the BS2
were allowed to reset during the data-gathering
period, some or all of the earlier data would
have been lost. So I devised a trapdoor approach
that prevented the program from starting over if
reset. See listing 3.

The idea is as simple as locking a door behind
you. When the BS2 is first programmed, a Data
directive writes 0 to address 0 of the EEPROM.
The program reads this location, and, if it’s 0,
writes 255 to it and continues with the program.
If the location does not contain 0, the program
halts.

When the program is downloaded to the BS2,
the door is unlocked, because the downloading
process writes 0 to EEPROM address 0. When
the program executes, it locks the door by
writing 255 to it. If the BS2 resets, it will find
255 (locked) in the EEPROM address, and will
stop.

This technique is also open to modification. In
the data-logging application, I added a menu
item that allowed the user to unlock the
program manually. Another variation would be
to use a switch instead of a byte of the EEPROM
to lock out resets. The user would turn the
device on, then move the switch from run to
stop. The BS2 would check the run/stop switch
at the beginning of the program, and continue
only if it was in the run position.

In either case, a flashing light or buzzer could
signal a reset that occurred after lock out.

Stamp Applications no. 13, March 1996

4

BASIC for Beginners. Last month, we looked
at the logic of IF/THEN instructions. We saw
that PBASIC can look at a relationship such as
“x < 10” and, if the current value of x makes that
statement true, can go to a specific line in the
program. In other words, PBASIC can make
decisions .

We also touched on the fact that PBASIC can
combine relationships using AND and OR to
make decisions about more complicated matters.
This month, we’re going to look at the rules that
govern this kind of logic. This logic not only
works with IF/THEN decisions, it also lays the
foundations for bit manipulations—efficient
shortcuts for testing or changing the states of
bits (1s and 0s).

Starting on familiar turf, let’s take another
look at a compound IF/THEN instruction.

IF pin1 = 1 OR pin2 = 1 THEN Alarm

So, if either of those comparisons— “pin1 = 1”
or “pin2 = 1” is true, then the alarm goes off.
Suppose we needed to make a table of all the
conditions that could set off the alarm. It would
look like this:

pin1 = 1 pin2 = 1 Alarm
FALSE FALSE OFF
FALSE TRUE ON
TRUE FALSE ON
TRUE TRUE ON

If those pins represent switches connected to
doors and windows of a house, then that logic
makes good sense. You want an alarm to go off
in the event that bad guys are coming through
the door, the window, or both. But suppose pin1
represented the state of the door switches, and
pin2 was the state of the arming switch (0=off;
1=on). You’d want the alarm to sound only if the
system were armed and a door opened. The new
IF/THEN instruction, just like the plain-English
description, uses AND instead of OR:

IF pin1 = 1 AND pin2 = 1 THEN Alarm

The new table expressing all possible states of
the pins and alarm would be:

pin1 = 1 pin2 = 1 Alarm
FALSE FALSE OFF
FALSE TRUE OFF
TRUE FALSE OFF
TRUE TRUE ON

If AND and OR were useful only with
IF/THEN instructions, they’d still be darn
useful. But IF/THEN is only the tip of the
iceberg. If you’re just now encountering the
power of logical operators like AND and OR for
the first time, you’re in about the same position
as someone who’s first encountered the
arithmetic operators + and –. Not only are there
more logical operators, but there’s a whole
system for understanding and applying them,
called Boolean logic.

I want to leave you with a thought for next
time, when we’ll start digging around in the
Boolean toolbox in earnest: AND and OR work
on expressions that have two possible values,
True and False. We could represent those states
with individual bits, since they also have two
possible states, 1 and 0. What if there were a
way to apply logical operators directly to bits, or
groups of bits in PBASIC? There is , and some of
the most powerful techniques for writing
efficient programs spring from this application
of logic.

Sources

For more information on the BASIC Stamp,
contact Parallax Inc., 3805 Atherton Road no.
102, Rocklin, CA 95765; phone 916-624-8333;
fax 916-624-8003; BBS 916-624-7101; e-mail
info@parallaxinc.com.

Send questions, suggestions, or requests for
future Stamp Applications to:
Scott Edwards Electronics, 964 Cactus Wren
Lane, Sierra Vista, AZ 85635; phone 520-459-
4802; fax 520-459-0623; e-mail (Compuserve) at
72037,2612; on the Internet 72037.2612 @
compuserve.com. Scott offers Stamp-related
products and kits, including:

The Counterfeit controller, a kit alternative to
the BASIC Stamp, is $29. Double- and quad-
speed options are $2 and $4, respectively. The

New contact information:

Scott Edwards Electronics, Inc.
2700 E. Fry Blvd. Suite A4
Sierra Vista, AZ 85635
ph: 520-459-4802; fax 520-459-0623

web: www.seetron.com
e-mail: scott@seetron.com

Stamp Applications no. 13, March 1996

5

Counterfeit Development System, required to
program Counterfeits is $69 and includes a 150-
page manual, downloading cable kit, Parallax
software, and one Counterfeit controller kit.

The Stamp Stretcher 1B adds 16 digital I/O
lines, plus an 8-bit analog input to your Stamp I,
Counterfeit, or Stamp II. It interfaces with these
controllers via a 2400- or 9600-bps serial
connections. The Stretcher 1B is $30 in kit form,

$45 assembled.
Visa, Mastercard, and American Express

accepted for phone/fax orders. Personal checks
and money orders are welcome for mail orders.

The UGN3113U Hall-effect switch is available
from Newark Electronics. To get the number of
the Newark office nearest you, phone their
national administrative office at 312-784-5100;
Canada, 416-670-4187; overseas, 312-638-7652.

Listing 1. Watchdog Monitors 1-Hz Pulse (PBASIC 1)

' Program: WATCHDOG.BAS (PBASIC 1 detects motor stall)
' This program implements a watchdog timer--a device that monitors
' a pulsebeat and takes action if the pulse is absent for a
' predetermined amount of time. Applications for watchdogs include
' resetting a locked-up PC or cutting power to a stalled motor.

SYMBOL state = bit0 ' Trigger state for button command.
SYMBOL dog = w1 ' The watchdog counter.
SYMBOL pulse_n = 0 ' Pin number for pulsebeat input.
SYMBOL pulse_p = pin0 ' Pin name for pulsebeat input.
SYMBOL btn = b4 ' Workspace for button command.
SYMBOL timeout = 300 ' Max value of "dog" before alarm.

begin:
 let dog = 0 ' Clear watchdog variable to 0.
 state = pulse_p ^ 1 ' State = inverse of pulse pin.

' In the routine below, if the pulse input changes state, the OK
' routine shows us the count in variable "dog," then clears "dog"
' by looping back to the beginning of the program. Otherwise,
' it increments dog and, if dog exceeds the timeout value, shows
' the alaram message.
watchDog:
 button pulse_n,state,0,1,btn,1,OK
 let dog = dog + 1
 if dog > timeout then alarm
Goto watchDog

alarm:
 debug "alarm!",cr ' Dog exceeded timeout.
 goto begin

OK:
 debug dog,cr ' Show us how high "dog" got.
 goto begin ' Then goto beginning to clear.

Stamp Applications no. 13, March 1996

6

Listing 2. Serial Retry Overcomes Communication Glitches (PBASIC 2)

' Program: TIMEOUT.BS2 (Demonstrate serial timeout function of BS2)
' This program demonstrates how to use the serial-input timeout
' capability of the BS2. If the BS2, interfaced to a Stamp Stretcher 1B,
' does not receive a response to an analog-conversion request within
' 1 millisecond, it displays the message "Timeout" on the PC debug
' screen. If the Stretcher does return the data in time, the BS2
' does not execute the error code, but displays the ADC result on the
' debug screen. In a real program, the error handler would probably be
' more elaborate--tracking the number of retries, lighting a warning
' light, sounding a buzzer, reinitializing the Stretcher, etc. Since
' communication errors are relatively rare under normal circumstances,
' you can unhook the serial connection between the BS2 and Stretcher
' while the program is running to demonstrate the error routine.

N96N con $4054 ' Set 9600 baud, inverted, no parity.
result var byte ' Store ADC result in this byte.
maxtime con 1 ' Allow this many milliseconds for reply.
comPin con 0 ' Connect this pin of BS2 to Stretcher "S" pin.

serout comPin,N96N,["***"] ' Reset the Stretcher.
again: ' Endless loop.
 pause 1000 ' Wait a second between tries.
 serout comPin,N96N,["A"] ' Send (A)nalog request.

' The line below is the key to the program. It waits "maxtime" milli-
' seconds for serial start bit from the Stretcher. If the data doesn't
' arrive in time, it sends the program to the label "error." If the
' data does arrive, it stores it in the variable "result."

 serin comPin,N96N,maxtime,error,[result] ' Get response.

 debug ? result ' Display result.
goto again ' Do it again.

error: ' Serin timeout occurred: show error message.
 debug "Timeout",cr ' Display "Timeout" on PC debug screen.
goto again ' Try again.

Stamp Applications no. 13, March 1996

7

Listing 3. EEPROM Flag Locks Out Resets (PBASIC 2)

' Program: NO_RESET.BS2
' This program illustrates a method for letting a program detect the
' fact that the BS2 has reset since programming. This can be helpful
' in situations in which an unintended reset might cause loss of data,
' damage to equipment, etc. Note that an actual program should include
' some method for clearing the EEPROM reset flag other than just the
' data statement. Otherwise, the reset that occurs when a program is
' loaded, followed by the reset that occurs when the BS2 is disconnected
' from its programming cable, would trigger the reset-trapping routine.
' A button that causes the program to execute "write reset,0" would
' do the trick. To see the demo work, run the program. Watch the
' numbers go by on the debug screen, then press the reset button.
' The screen will display "Reset detected!"

x var byte ' Variable for busy work in demo.
reset data @0,0 ' Write 0 to EEPROM address 0 as a flag to

' indicate that the program has not reset.

Demo:
 read reset,x ' Copy the value of reset into x
 if x = 0 then run ' If x is 0, then the BS2 has not reset, so run.
 debug cls, "Reset detected!"
 END ' If x is not 0, then a reset occurred, so stop.

run:
 write reset,255 ' Record first startup of BS2

busy_work: ' Dummy program to show activity:
 debug ? x ' Display value of x on PC screen.
 x = x+1 ' Add 1 to x.
 pause 500 ' Wait a half second.
goto busy_work ' Repeat endlessly.

