
Stamp Applications no. 10 (December ’95):

Put Your Data Up in Lights
Using an LED Display Chip

Interfacing the MAX7219 LED Driver
And Part 1 of an Introduction to BASIC,
 by Scott Edwards

ALTHOUGH most consumer-electronic gear uses
liquid-crystal displays (LCDs), military and
industrial users are still in love with light-
emitting-diode (LED) readouts. Balanced
against LEDs’ brutally high current draw and
poor contrast under bright lighting are their
toughness, broad viewing angle, and wide
operating temperature range. These are
significant advantages that the goop-under-
glass construction of LCDs cannot match.

Of course, you might prefer LEDs just for
their snazzy appearance.

This month’s column will show you how to use
an off-the-shelf LED driver chip to add an LED
display to your Stamp projects with a minimum
of hardware and software overhead.

And since so many of you have asked, I’m
beginning a new feature this month—a column
within a column—introducing the fundamentals
of BASIC programming.

Meet the Max

The Maxim MAX7219 LED display driver is
the key to creating a Stamp-friendly LED
display. The chip’s features include:

• Drives up to eight 7-segment (plus decimal
point) LED displays, or 64 discrete LEDs.

• Multiplexes display at high speed (more
than 1200 Hz) to prevent visible flicker.

• Decodes binary-coded decimal (BCD) digits
into patterns of LED segments.

• Controls current to the LEDs and provides
software control over brightness.

• Permits software configuration of the
display width from one to eight digits.

The figure and listing show how the hardware
and software go together. Before you run off to
build a display based on them, let’s discuss some
operating principles of multiplexed LED
displays.

Multiplexing Makes the Most of the Max

The MAX7219 uses a technique called
multiplexing to drive 64 LEDs with just 16
output lines. How? Look at the figure. All of the
displays’ individual segment anodes (the +
connections of the LEDs) are connected in
parallel. Within each display, all of the LED
cathodes (the – connections) are tied together.
This is called a “common cathode” configuration.

Imagine that the a segment line is connected
to +5 volts, but only one display’s common-
cathode lines is grounded. The top bar (segment
a) of that one display would light up. The other
displays would remain dark, lacking a complete
path from +5 to ground.

Now, if you grounded a different display’s
common-cathode line, its segment a would light.

Stamp Applications no. 10, December 1995

2

MAX7219
(pin numbers in
parentheses)

1 pin 7

Stamp

2 pin 5

3 pin 6

b

c

d

e

f

g

a

dp

a

b

c

d

e

f

g

dp

SEG A (14)

SEG B (16)

SEG C (20)

SEG D (23)

SEG E (21)

SEG F (15)

SEG G (17)

SEG DP (22)

DIGIT 7 (8)

DIGIT 6 (5)

DIGIT 5 (10)

DIGIT 4 (3)

DIGIT 3 (7)

DIGIT 2 (6)

DIGIT 1 (11)

DIGIT 0 (2)

COMMON
CATHODE

GND (9)GND (4)

DATA IN (1)

CLOCK (13)

LOAD (12)

+5

+

10µF

0.1µF

10k

Iset (18)

V+ (19)

Dout (24)

10k
(all)

1
2

3

Schematic diagram for five-digit display based on the MAX7219.

And if you switched the ground connection
from one display to another 30 or more times a
second, it would appear that all of the displays’
a segments were lit at once.

It’s not much of a stretch to see that a fast
controller could create the impression of lighting
all of the displays with different patterns of
lights by rapidly switching the segment lines
and scanning the digit lines. That’s called
multiplexing, and it’s what the MAX7219 does.

In addition to multiplexing the displays, the
MAX7219 incorporates tables that correlate the
numbers 0 to 9 to their corresponding patterns
of LEDs. For example, the number 3 is
represented by lighting LED segments a , b, c, d,
and g. It’s normally the program’s responsibility
to convert digits into LED segments. However,
the MAX7219 can perform this conversion for
you, depending on a configuration setting. This
feature saves at least a dozen bytes of PBASIC
program memory in applications that use
numeric displays.

Synchronous Serial Communication

The MAX7219 uses a three-wire synchronous-
serial interface. We’ve seen these before with

such peripherals as the LTC1298 analog-to-
digital converter, DS1620 digital thermometer,
and many others. This type of interface sends
one bit at a time, just like RS-232 asynchronous
serial. It differs in that it requires a separate
clock pulse to tell the receiver when to grab the
next data bit.

The listing shows how this process works on a
BS1-type controller in the code labeled Max_out.
The new BS2 controllers have a command called
Shiftout that handles the whole process. In the
BS2 version of the program (included with the
AppKit; see Sources), the code within the
For/Next loop is reduced to:

shiftout, Data_n,CLK,msbfirst,[temp]

...where temp is the variable containing data
to be sent to the MAX7219.

Final Hardware Notes

As I mentioned at the beginning of the article,
one of the reasons for preferring LCDs to LEDs
is current draw. The MAX7219 provides a
means of setting the segment current of the
LEDs through the ISET pin. The smaller this
resistor, the greater the current through each

Stamp Applications no. 10, December 1995

3

LED segment. The value shown in the
schematic—10k—sets the maximum segment
current of 40 mA. If all eight segments of a
particular display are lit, the current draw is 8 x
40 = 320 mA. I mention this because the voltage
regulators on the Stamp products are limited to
50 mA; the Counterfeits to 100 mA. You can
increase the value of the ISET resistor, but the
display won’t be as bright. At 60k the segment
current will be approximately 10 mA, and
combined maximum draw will drop to 80 mA.
Depending on the LED displays you choose, this
maybe bright enough.

Finally, you may be wondering about the 10k
pulldown resistors on the interface between the
Stamp and the MAX7219. What purpose do they
serve? When a Stamp or Counterfeit resets,
either when you first apply power or push the
reset button, its pins are in input mode. They
are effectively disconnected, so any digital
inputs connected to them float. Such inputs
frequently float high (logical 1, as though
connected to +5V), but noise can cause them to
change states at random.

During the time it takes the Stamp to come
out of reset, noise on these inputs can put the
MAX7219 into test mode, with all segments lit.
The resulting current draw may overwhelm the
voltage regulator, and prevent the Stamp from
ever waking up. Less seriously, it may cause a
bright, momentary flash on the display, making
the user think that something’s wrong with it.
The resistors are cheap insurance against such
embarrassments.

If it’s so BASIC ,
how come I don’t understand it?

I’ve received calls and e-mail recently from
folks who read this column regularly and are
intrigued by the applications they see here, but
don’t know anything about programming.
They’re eager to get started with the Stamp or
Counterfeit, but unsure about learning BASIC.

This was news to me, because BASIC has been
universally available and very popular since the
dawn of the personal-computer era. Most of the
early “home computers” had BASIC stored in
read-only memory (ROM) right on the machine.
Some form of BASIC has been bundled with

every version of DOS, and it’s starting to show
up as a macro language for programs like
spreadsheets and word processors.

On the other hand, bookstore shelves are no
longer full to bursting with books on BASIC,
and the popularity of programming as a leisure
activity for computer users has fallen waaay
behind Doom and Internet flame wars. And
many schools are no longer teaching BASIC as
an introduction to computing. Ivory-tower types
have convinced them that anything as
understandable as BASIC must cause
irreparable damage to the mind. The bizarre C
language—the “C” is for “cryptic”—is much more
effective at convincing people to leave
programming to professionals.

So it’s time for a running tutorial on BASIC.
From now on, the final section of this column
will contain hints and information on
programming for newbies. Next issue will kick
things off with a discussion of what a program
is, and how to set about writing one. Thereafter,
we’ll look at topics like memory, math, logic,
decisions, loops, and subroutines in detail.
Naturally, since this column is about the Stamp
and workalikes (the Counterfeit), we’ll
concentrate on PBASIC, but a lot of the concepts
will apply to other BASICs, and to programming
in general.

A final thought—most programmers agree
that there are really only two effective methods
for learning to program; looking at someone
else’s programs and writing your own. So if you
have QBASIC on your DOS machine, or own one
of those old built-in-BASIC dinosaurs, fire it up
and play around with programming. Many of
the old manuals contain great tutorials; try ’em
out. If you like it (and you will), take the plunge
with a Stamp or Counterfeit. We learn by doing.

Sources

For more information on the BASIC Stamp,
contact Parallax Inc., 3805 Atherton Road no.
102, Rocklin, CA 95765; phone 916-624-8333;
fax 916-624-8003; BBS 916-624-7101; e-mail
info@parallaxinc.com.

Send questions, suggestions, or requests for
future Stamp Applications to:

Stamp Applications no. 10, December 1995

4

Scott Edwards Electronics, 964 Cactus Wren
Lane, Sierra Vista, AZ 85635; phone 520-459-
4802; fax 520-459-0623; e-mail (Compuserve) at
72037,2612; on the Internet 72037.2612 @
compuserve.com. Scott offers Stamp-related
kits, including:

The Counterfeit controller, a kit alternative to
the BASIC Stamp, is $29. Double- and quad-
speed options are $2 and $4, respectively. The
Counterfeit Development System, required to
program Counterfeits (also for programming
BS1 Stamps) is $69 and includes a 150-page

manual, downloading cable kit, Parallax
software, and one Counterfeit controller kit.

The MAX7219 AppKit includes complete
documentation, source code for Stamps I and II
and PIC microcontrollers on disk, and one
MAX7219 chip for $25.

Visa, Mastercard, and American Express
accepted for phone/fax orders. POs accepted on
approved credit. Personal checks and money
orders are welcome for mail orders.

' Program Listing: MAX7219.BAS (Using the LED Display Driver with BS1)
' This program controls the MAX7219 LED display driver. It demonstrates
' the basics of communicating with the 7219, and shows a convenient
' method for storing setup data in tables. To demonstrate practical
' application of the 7219, the program drives a 5-digit display to
' show the current value of a 16-bit counter (0-65535). The subroutines
' are not specialized for counting; they can display _any_ 16-bit
' value on the LCDs. (A specialized counting routine would be faster,
' since it would only update the digits necessary to maintain the
' count; however, it wouldn't be usable for displaying arbitrary
' 16-bit values, like the results of Pot, Pulsin, or an A-to-D
' conversion).

' Hardware interface with the 7219:
SYMBOL DATA_n = 7 ' Bits are shifted out this pin # to 7219.
SYMBOL DATA_p = pin7 ' " " " " ".
SYMBOL CLK = 5 ' Data valid on rising edge of this clock pin.
SYMBOL Load = 6 ' Tells 7219 to transfer data to LEDs.

' Register addresses for the MAX7219. To control a given attribute
' of the display, for instance its brightness or the number shown
' in a particular digit, you write the register address followed
' by the data. For example, to set the brightness, you'd send
' 'brite' followed by a number from 0 (off) to 15 (100% bright).
SYMBOL dcd = 9 ' Decode register; a 1 turns on BCD decoding.
SYMBOL brite = 10 ' " " " intensity register.
SYMBOL scan = 11 ' " " " scan-limit register.
SYMBOL switch = 12 ' " " " on/off register.
SYMBOL test = 15 ' Activates test mode (all digits on, 100% bright)

' Variables used in the program.
SYMBOL max_dat = b11 ' Byte to be sent to MAX7219.
SYMBOL index = b2 ' Index into setup table.
SYMBOL nonZ = bit1 ' Flag used in blanking leading zeros.
SYMBOL clocks = b3 ' Bit counter used in Max_out.
SYMBOL dispVal = w2 ' Value to be displayed on the LEDs.
SYMBOL decade = w3 ' Power-of-10 divisor used to get decimal digits.
SYMBOL counter = w4 ' The value to be displayed by the demo.

New contact information:

Scott Edwards Electronics, Inc.
2700 E. Fry Blvd. Suite A4
Sierra Vista, AZ 85635
ph: 520-459-4802; fax 520-459-0623

web: www.seetron.com
e-mail: scott@seetron.com

Stamp Applications no. 10, December 1995

5

' The program begins by setting up all pins to output low, matching
' the state established by the pulldown resistors.
let port = $FF00 ' Dirs = $FF (all outputs) and Pins = 0 (low).

' Next, it initializes the MAX7219. A lookup table is convenient way
' to organize the setup data; each register address is paired with
' its setting data. The table sets the scan limit to 4 (5 digits,
' numbered 0-4); brightness to 3; BCD decoding to the lower 5 digits
' (the only ones we're displaying), and switches the display on. The
' MAX7219 expects data in 16-bit packets, but our lookup table holds
' a series of 8-bit values. That's why the loop below is designed to
' pulse the Load line _every_other_ byte transmitted.
for index = 0 to 7 ' Retrieve 8 items from table.
 lookup index,(scan,4,brite,3,dcd,$1F,switch,1),max_dat
 gosub Max_out
 let bit0 = index & 1 ' Look at lowest bit of index.
 if bit0 = 0 then noLoad
 pulsout Load,1 ' If it's 1, pulse Load line.
NoLoad: ' Else, don't pulse.
next ' Get next item from table.

' ====================== MAIN PROGRAM LOOP ==========================
' Now that the MAX7219 is properly initialized, we're ready to send it
' data. The loop below increments a 16-bit counter and displays it on
' the LEDs connected to the MAX. Subroutines below handle the details
' of converting binary values to binary-coded decimal (BCD) digits and
' sending them to the MAX.
Loop:
 let dispVal = counter
 gosub MaxDisplay
 let counter = counter+1
goto loop

' ========================= SUBROUTINES ============================
' The MAX7219 won't accept a number like "2742" and display it on
' the LEDs. Instead, it expects the program to send it individual
' digits preceded by their position on the display. For example,
' "2742" on a five-digit display would be expressed as:
' "digit 5: blank; digit 4: 2; digit 3: 7; digit 2: 4; digit 1: 2"
' The routine MaxDisplay below does just that, separating a value
' into individual digits and sending them to the MAX7219. If the
' lefthand digits are zero (as in a number like "102") the
' routine sends blanks, not zeros until it encounters the first
' non-zero digit. This is called "leading-zero blanking."
MaxDisplay:
let decade = 10000 ' Start with highest digit first.
let nonZ = 0 ' Reset non-zero digit flag.
for index = 5 to 1 step -1 ' Work from digit 5 to digit 1.
 let max_dat = index ' Send the digit address.
 gosub Max_out
 let max_dat = dispVal/decade ' Get the digit value (0-9).
 if max_dat = 0 then skip ' If digit <> 0 then nonZ = 1.
 let nonZ = 1 ' If a non-zero digit has already
skip: ' ..come, or the current digit is not

Stamp Applications no. 10, December 1995

6

 if nonZ = 1 OR max_dat <> 0 OR index = 1 then skip2 '..0, or the
 let max_dat = 15 '.._only_ digit is 0, send the digit,
skip2: '..else send a blank.
 gosub Max_out ' Send the data in max_dat and
 pulsout Load,1 ' ..pulse the Load line.
 let dispVal = dispVal//decade ' Get the remainder of value/decade.
 let decade = decade/10 ' And go to the next smaller digit.
 next ' Continue for all 5 digits.
return ' Done? Return.

' Here's the code responsible for sending data to the MAX7219. It
' sends one byte at a time of the 16 bits that the MAX expects. The
' program that uses this routine is responsible for pulsing the
' Load line when all 16 bits have been sent. To talk to the MAX7219,
' Max_out places the high bit (msb) of max_dat on DATA_p, the data pin,
' then pulses the clock line. It shifts the next bit into position by
' multiplying max_dat by 2. It repeats this process eight times.
' In order to avoid hogging the bit-addressable space of w0, the
' routine uses a roundabout way to read the high bit of max_dat: if
' max_dat < $80 (%10000000) then the high bit must be 0, so a 0
' appears on DATA_p. If max_dat >= to $80, then a 1 appears on DATA_p.
Max_out:
for clocks = 1 to 8 ' Send eight bits.
 let DATA_p = 0 ' If msb of max_dat = 1, then let
 IF max_dat < $80 then skip3 '..DATA_p = 1, else DATA_p = 0.
 let DATA_p = 1
skip3:
 pulsout CLK,1 ' Pulse the clock line.
 let max_dat = max_dat * 2 ' Shift max_dat one bit to the left.
next ' Continue for eight bits.
return ' Done? Return.

